Что нужно для определения твердости методом бринелля
Методы измерения твердости металлов
Существует довольно большое количество различных механических характеристик металла, которые учитываются при производстве различных деталей. Многие из них зависят от химического состава материала, другие от особенностей эксплуатации. Измерение твердости металла проводится чаще других испытаний, так как это качество во многом определяет особенности эксплуатации материала. Рассмотрим особенности определения твердости подробнее.
Понятие твердости
Твердость – свойство материалов, характеризующее способность проникновения одного, более твердого, тела в другое. Также эта характеристика определяет устойчивость к пластической деформации или разрушению поверхностных слоев при оказании сильного давления.
Измеряется показатель в самых различных единицах в зависимости от применяемого метода.
Все методы определения твердости материалов можно разделить на несколько основных групп:
Измерение твердости инструмента
Кроме этого, классификация методов определения твердости проводится по принципу приложенной нагрузки. Выделяют следующие способы испытания образца:
Как правило, в твердомерах есть деталь, которая оказывает воздействие на испытываемую заготовку. Примером можно назвать стальные шарики различного диаметра и алмазные наконечники с формой пирамиды. Некоторые из применяемых на сегодняшний день методов рассмотрим подробнее.
Измерение твердости по Бринеллю
Чаще всего проводится измерение твердости по Бринеллю. Этот метод регламентирован ГОСТ 9012. К особенностям испытания металлов и сплавов подобным методом можно отнести следующие моменты:
Измерение по методу Бринеллю
Стоит учитывать, что по Бринеллю не рекомендуется тестировать стали и сплавы, твердость которых превышает значение 450HB. Цветные металлы должны обладать показателем ниже 200 HB.
Измерение твердости по Виккерсу
Также выделяют метод измерения твердости по Виккерсу, который регламентирован ГОСТ 2999. Получил он распространение при определении твердости деталей и заготовок, который имеют небольшую толщину. Кроме этого, он может применяться для измерения твердости деталей, имеющих поверхностный твердый слой.
К особенностям этого способа тестирования образца можно отнести нижеприведенные моменты:
В некоторых случаях после полученного значения указывается время выдержки и величина прилагаемой нагрузки, что позволяет с большей точностью определить значение твердости.
Измерение твердости по Роквеллу
Данный метод регламентируется ГОСТ 9013. Для его проведения используется специальный прибор для измерения твердости, который позволяет создать две последовательные нагрузки, прилагаемые к поверхности образца. К особенностям проведения подобного теста можно отнести:
Принцип измерения твердости по Роквеллу
В качестве индикатора могут использоваться стальной шарик и два алмазных конуса различного размера. Этот метод измерения твердости закаленных деталей проводится только при применении алмазного конуса меньшего размера, предварительная оказываемая нагрузка составляет 10 кгс, основная 50 кгс. За счет предварительной нагрузки исключается вероятность того, что из-за упругости материала полученные значения будут менее точными. Кроме этого, предварительная нагрузка позволяет проводить измерение твердости металлов и сплавов, которые прошли предварительную термическую обработку.
Измерение твердости по Шору
Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.
Шкала твердости по Шору
Рассматривая измерение твердости по Шору, следует отметить следующие моменты:
Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.
Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.
В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.
Соотношение значений твердости
При выборе метода измерения твердости поверхности следует учитывать, что между полученными данными нет никакой связи. Другими словами, выполнить точный перевод одной единицы измерения в другую нельзя. Применяемые таблицы зависимости не имеют физического смысла, так как они эмпирические. Отсутствие зависимости также можно связать с тем, что при тестировании применяется разная нагрузка, различные формы наконечников.
Существующие таблицы следует применять с большой осторожностью, так как они дают только приблизительные результаты. В некоторых случаях рассматриваемый перевод может оказаться весьма точным, что связано с близкими физико-механическими свойствами испытуемых металлов.
В заключение отметим, что значение твердости связано со многими другими механическими свойствами, к примеру, прочностью, упругостью и пластичностью. Поэтому для определения основных свойств металла довольно часто проводят измерение именно твердости. Однако прямой зависимости между всеми механическими свойствами металлов и сплавов нет, что следует учитывать при проведении измерений.
Твердомеры для металлов. Методы Бринелля и Роквелла
Выбор метода контроля твёрдости зависит от:
Твердомеры Бринелля: методика и оборудование
Используются для определения твёрдости мягких сплавов и цветных металлов, чугуна и незакалённых сталей в соответствии с ГОСТ 9012-59.
Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний позволяет узнать твердость материалов, превышающих показатель обычной стали.Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, алюминия, дюраля, нержавейки, стекла. То есть, твердомер применяют не только к металлам.
Способ определения твёрдости по методу Бринелля заключается во вдавливании в поверхность ОК шарика-индентора (из закалённой стали или из твёрдого сплава). В результате на металле остаётся отпечаток в виде полусферы определённого диаметра и глубины, что позволяет определить меру твёрдости по Бринеллю (НВ).
Современная конструкция твердомера Бринелля позволяет плавно внедрять индентор в образец, обеспечивает высокую точность приложения нагрузки (погрешность не более 1,0 %), что позволяет получать отпечатки с высокой повторяемостью, необходимой для обеспечения точности измерений твердости.
В качестве инденторов используются шарики из твердого сплава диаметром 1; 2,5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала, который разделен на 5 основных групп:
1 — сталь, никелевые и титановые сплавы;
2 — чугун;
3 — медь и сплавы меди;
4 — легкие металлы и их сплавы;
5 — свинец, олово.
При измерении твердости по методу Бринелля необходимо выполнять следующие условия:
Твердомеры для металлов, реализующие метод Бринелля, подразделяют на приборы типа ТШ и типа БТБ.
Стационарные твердомеры для металлов типа ТШ, с механическим приводом от электродвигателя, состоят из следующих узлов:
Принцип измерения следующий: деталь испытуемой поверхностью вверх устанавливают на стол, после чего поднимают его до упора, имеющегося в корпусе индентора. Далее включается электродвигатель, который перемещает корпус индентора. Тот, преодолевая сопротивление пружин, приводит в движение шарик, который вдавливается в металл. Конечный результат считывается по шкале. Отношение плеч рычажного механизма, а также суммарный вес грузов на противовесе устанавливается в зависимости от предполагаемого результата измерений (см. таблицу выше).
Твердомеры для металлов типа БТБ имеют некоторые эксплуатационные преимущества перед приборами ТШ: они обладают увеличенными размерами рабочего пространства стола, смена режимов нагружения производится механически, а для отсчёта результата используется более точная оптическая система. Работы на БТБ производят в той же последовательности, что и на приборах ТШ, но образец после испытания сканируется измерительной головкой, с отображением результата на экране.
Данный способ подходит также для определения твёрдости изделий, которые эксплуатируются при повышенных температурах. Для этого на стол устанавливается ванна с нагревающей образец жидкостью, причём для температур до 300 0 С используют масло, а для более высоких температур – солевой расплав. Образец помещают в ванну на асбестовую плиту, после чего измеряют твёрдость обычным методом.
Доступными и простыми в эксплуатации являются портативные (переносные) твердомеры для металлов. Испытательная головка прибора устанавливается на деталь в месте измерения и крепится струбциной или специальными захватами. Нагрузка создаётся вручную, и контролируется по шкале индикатора. Для измерения результата применяют переносной микроскоп. Замеренный отпечаток сравнивается со значениями, которые приводятся в таблицах пересчёта.
Твердомеры для металлов, работающие по методу Бринелля, имеют ряд ограничений:
Твердомеры Роквелла: методика и оборудование
Метод определения твёрдости металлов по состоит во вдавливании алмазного конуса или стального закалённого шарика в предварительно зашлифованную поверхность образца. В отличие от предыдущего способа твёрдость по заключается в определении глубины вдавливания. Метод считается более оперативным, а в таких автоматизируется как процесс испытания, так и последующая обработка его результатов.
Суть метода заключается в том, что предварительно выбирается некоторая реперная точка, и полученная для этой координаты глубина внедрения индентора вычитается из произвольно выбранной наибольшей глубины вдавливания.
Существует 11 шкал определения твердости по методу Роквелла (A; B; C; D; E; F; G; H; K; N; T), основанных на комбинации «индентор (наконечник) — нагрузка». Наиболее широко используются два типа инденторов: шарик из карбида вольфрама диаметром 1/16 дюйма (1,5875 мм) или такой же шарик из закаленной стали либо конический алмазный наконечник с углом при вершине 120°. Возможные нагрузки — 60, 100 и 150 кгс. Величина твёрдости определяется как относительная разница в глубине проникновения индентора при приложении основной и предварительной (10 кгс) нагрузки.
Для обозначения твёрдости, определённой по методу Роквелла, используется символ HR, к которому добавляется буква, указывающая шкалу, по которой проводились испытания (HRA, HRB, HRC).
Таблица определения твердости по Бринеллю
Диаметр отпечатка d10 или 2d5, или 4d2,5 | Число твердости по Бринеллю при нагрузке Р (кгс), равной | Диаметр отпечатка d10 или 2d5, или 4d2,5 | Число твердости по Бринеллю при нагрузке Р (кгс), равной | ||||
30 D 2 | 10 D 2 | 2,5 D 2 | 30 D 2 | 10 D 2 | 2,5 D 2 | ||
2,00 | 955 | 4,00 | 229 | 76,3 | 19,1 | ||
2,05 | 910 | 4,05 | 223 | 74,3 | 18,6 | ||
2,10 | 868 | 4,10 | 217 | 72,4 | 18,1 | ||
2,15 | 4,20 | 207 | 68,8 | 17,2 | |||
2,20 | 764 | 4,25 | 201 | 67,1 | 16,8 | ||
2,25 | 735 | 4,30 | 197 | 65,5 | 16,4 | ||
2,30 | 707 | 4,35 | 192 | 63,8 | 16,0 | ||
2,35 | 682 | 4,40 | 187 | 62,4 | 15,6 | ||
2,40 | 659 | 4,45 | 183 | 60,9 | 15,2 | ||
2,45 | 616 | 4,50 | 179 | 59,5 | 14,9 | ||
2,50 | 597 | 4,55 | 174 | 58,1 | 14,5 | ||
2,55 | 579 | 4,60 | 170 | 56,8 | 14,2 | ||
2,60 | 562 | 4,65 | 167 | 55,5 | 13,9 | ||
2,65 | 531 | 4,70 | 163 | 54,3 | 13,6 | ||
2,70 | 516 | 4,75 | 159 | 53,0 | 13,3 | ||
2,75 | 489 | 4,80 | 156 | 51,9 | 13,0 | ||
2,80 | 477 | 4,85 | 152 | 50,7 | 12,7 | ||
2,85 | 455 | 4,90 | 149 | 49,6 | 12,4 | ||
2,90 | 444 | 4,95 | 146 | 48,6 | 12,2 | ||
2,95 | 429 | 5,00 | 143 | 47,5 | 11,9 | ||
3,00 | 415 | 34,6 | 5,05 | 140 | 46,5 | 11,6 | |
3,05 | 401 | 33,4 | 5,10 | 137 | 45,5 | 11,4 | |
3,10 | 388 | 129 | 32,3 | 5,15 | 134 | 44,6 | 11,2 |
3,15 | 375 | 125 | 31,3 | 5,20 | 131 | 43,7 | 10,9 |
3,20 | 363 | 121 | 30,3 | 5,25 | 128 | 42,8 | 10,7 |
3,25 | 352 | 117 | 29,3 | 5,30 | 126 | 41,9 | 10,5 |
3,30 | 341 | 114 | 28,4 | 5,35 | 123 | 41,0 | 10,3 |
3,35 | 331 | 110 | 27,6 | 5,40 | 121 | 40,2 | 10,1 |
3,40 | 321 | 107 | 26,7 | 5,45 | 118 | 39,4 | 9,86 |
3,45 | 311 | 104 | 25,9 | 5,50 | 116 | 38,6 | 9,66 |
3,50 | 302 | 101 | 25,2 | 5,55 | 114 | 37,9 | 9,46 |
3,55 | 293 | 97,7 | 24,5 | 5,60 | 111 | 37,1 | 9,27 |
3,60 | 285 | 95,0 | 23,7 | 5,65 | 109 | 36,4 | 9,10 |
3,65 | 277 | 92,3 | 23,1 | 5,70 | 107 | 35,7 | 8,93 |
3,70 | 269 | 89,7 | 22,4 | 5,75 | 105 | 35,0 | 8,76 |
3,75 | 262 | 87,2 | 21,8 | 5,80 | 103 | 34,3 | 8,59 |
3,80 | 255 | 84,9 | 21,2 | 5,85 | 101 | 33,7 | 8,43 |
3,85 | 248 | 82,6 | 20,7 | 5,90 | 99,2 | 33,1 | 8,26 |
3,90 | 241 | 80,4 | 20,1 | 5,95 | 97,3 | 32,4 | 8,11 |
3,95 | 235 | 78,3 | 19,6 | 6,00 | 95,5 | 31,8 | 7,96 |
Выбор метода в зависимости от условий испытания
Вариант метода | А | В | С | F | N | T |
Форма индентора | Конус | Шарик | Конус | Шарик | Конус | Шарик |
Материал индентора | Алмаз | Сталь | Алмаз | Сталь | Алмаз | Сталь |
Условное обозначение твёрдости | HRA | HRB | HRC | HRF | HRN | HRT |
Диапазон замера твёрдости | 60…80 | 35…100 | 30…70 | 60…100 | 17…92 | 5…94 |
Металлы | Стали весьма высокой твёрдости | Стали средней твёрдости, цветные сплавы | Стали повышенной твёрдости | Тонколистовые металлы | Для испытания тонких или малогабаритных изделий |
Стационарные твердомеры для металлов по методу Роквелла (типа ТК) делятся на приборы с электрическим и механическим приводом. Ручной твердомер ТК включает в себя:
Шкала | Сокращённое обозначение | Испытательная нагрузка | Тип индентора | Область применения | N | s |
---|---|---|---|---|---|---|
A | HRA | 60 кгс | 120° алмазный сфероконический * | Карбид вольфрама | 100 | 0,002 мм |
B | HRB | 100 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | Алюминиевые сплавы, бронза, мягкие стали | 130 | 0,002 мм |
C | HRC | 150 кгс | 120° алмазный, сфероконический | Твёрдые стали с HRB > 100 | 100 | 0,002 мм |
D | HRD | 100 кгс | 120° алмазный, сфероконический | 100 | 0,002 мм | |
E | HRE | 100 кгс | Диаметр 1⁄8 дюйма (3,175 мм) стальной, сферический | 130 | 0,002 мм | |
F | HRF | 60 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | 130 | 0,002 мм | |
G | HRG | 150 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | 130 | 0,002 мм | |
* Радиус сферического скругления вершины конуса 0,2 мм |
Факторы, влияющие на точность измерения
К недостатку метода Роквелла относится меньшая точность по сравнению с методами Бринелля и Виккерса.
Если вы хотите приобрести твердомер Бринелля, рекомендуем модель ТР 5008А или модель LC-200R