Что нужно делать при делении дробей

Дроби. Деление дробей.

Правила деления дробей.

1. Чтобы поделить 1-ну дробь на вторую, необходимо делимое умножить на число, которое обратно делителю.

2. Чтобы поделить дробь на натуральное число, необходимо делимое умножить на число, которое обратно делителю.

3. Иными словами, чтобы поделить дробь на натуральное число, необходимо знаменатель умножить на это число.

4. На ноль делить нельзя.

5. На смешанную дробь делить нельзя.

6. При определении результата пользуйтесь основным свойством дробей для сокращения дробей.

Для правильных и неправильных дробей правило деления следующее:

Чтобы поделить обыкновенную дробь, необходимо числитель делимого умножить на знаменатель делителя, а знаменатель делимого умножить на числитель делителя. Первое произведение берем числителем, а второе — знаменателем.

Деление дроби на дробь.

Чтобы разделить 1-ну обыкновенную дробь на вторую, не равную нулю, необходимо:

Что нужно делать при делении дробей

Иными словами, деление дробей переходит к умножению.

Чтоб поделить 1-ну дробь на вторую, необходимо делимое (1-ну дробь) умножить на обратную дробь делителю.

Что нужно делать при делении дробей

Деление дроби на число.

Схематически деление дроби на натуральное число выглядит так:

Что нужно делать при делении дробей

Чтобы поделить дробь на натуральное число, используют такой метод:

Выражаем натуральное число как неправильную дробь с числителем, который равен самому числу, а знаменатель равным 1-це.

Далее производим деление по правилу деления дроби на дробь.

Что нужно делать при делении дробей

Деление смешанных чисел.

При делении смешанных чисел необходимо представить числа как неправильные дроби, а далее делим их друг на друга по правилу деления дроби на дроби.

Источник

Деление обыкновенных дробей: правила, примеры, решения

С дробями можно выполнять все действия, в том числе и деление. Данная статья показывает деление обыкновенных дробей. Будут даны определения, рассмотрены примеры. Подробно остановимся на делении дробей на натуральные числа и наоборот. Будет рассмотрено деление обыкновенной дроби на смешанное число.

Деление обыкновенных дробей

Деления является обратным умножению. При делении неизвестный множитель находится при известном произведении и другого множителя, где и сохраняется его данный смысл с обыкновенными дробями.

Отсюда получим и сформулируем правило деления обыкновенных дробей:

Запишем правило в виде выражения: a b : c d = a b · d c

Правила деления сводятся к умножению. Чтобы придерживаться его, нужно хорошо разбираться в выполнении умножения обыкновенных дробей.

Перейдем к рассмотрению деления обыкновенных дробей.

Ответ: 9 7 : 5 3 = 27 35 .

При сокращении дробей следует выделять целую часть, если числитель больше знаменателя.

Для решения нужно перейти от деления к умножению. Запишем это в такой форме: 8 15 : 24 65 = 2 · 2 · 2 · 5 · 13 3 · 5 · 2 · 2 · 2 · 3 = 13 3 · 3 = 13 9

Необходимо произвести сокращение, а это выполняется следующим образом: 8 · 65 15 · 24 = 2 · 2 · 2 · 5 · 13 3 · 5 · 2 · 2 · 2 · 3 = 13 3 · 3 = 13 9

Деление необыкновенной дроби на натуральное число

Рассмотрим данное деление дроби на число.

Решение

Ответ: 16 45 : 12 = 4 135 .

Деление натурального числа на обыкновенную дробь

Ответ: 25 : 15 28 = 46 2 3 .

Деление обыкновенной дроби на смешанное число

При делении обыкновенной дроби на смешанное число легко можно свети к делению обыкновенных дробей. Нужно совершить перевод смешанного числа в неправильную дробь.

Деление смешанного числа производится таким же образом, как и обыкновенных.

Источник

Дроби. Умножение и деление дробей.

Умножение обыкновенной дроби на дробь.

Чтобы перемножить обыкновенные дроби, необходимо умножить числитель на числитель (получим числитель произведения) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

Что нужно делать при делении дробей

Что нужно делать при делении дробей

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби. Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Обратите внимание! Здесь не нужно искать общий знаменатель!!

Деление обыкновенной дроби на дробь.

Деление обыкновенной дроби на дробь происходит так: переворачиваете вторую дробь (т.е. меняете числитель и знаменатель местами) и после этого дроби перемножаются.

Формула деления обыкновенных дробей:

Что нужно делать при делении дробей

Что нужно делать при делении дробей

Умножение дроби на натуральное число.

Обратите внимание! При умножении дроби на натуральное число, числитель дроби умножается на наше натуральное число, а знаменатель дроби оставляем прежним. Если результатом произведения оказалась неправильная дробь, то обязательно выделите целую часть, превратив неправильную дробь в смешанную.

Что нужно делать при делении дробей

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением, переводим целое число в дробь с единицей в знаменателе. Например:

Что нужно делать при делении дробей

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Что нужно делать при делении дробей

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

Что нужно делать при делении дробей

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Что нужно делать при делении дробей

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Что нужно делать при делении дробей

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

Что нужно делать при делении дробей

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

Что нужно делать при делении дробей

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Источник

Деление дробей. Правила. Примеры.

Следующее действие, которое можно выполнять с дробями это деление. Выполнять деление дробей достаточно просто главное знать несколько правил деления. Разберем правила деления и рассмотрим решение примеров на данную тему.

Деление дроби на дробь.

Чтобы делить дробь на дробь, нужно дробь, которая является делителем перевернуть, то есть получить обратную дробь делителю и потом выполнить умножение дробей.

Что нужно делать при делении дробей

Деление дроби на число.

Чтобы разделить дробь на число, нужно знаменатель дроби умножить на число.

Выполните деления дроби на натуральное число \(\frac<4> <7>\div 3\).

Как мы уже знаем, что любое число можно представить в виде дроби \(3 = \frac<3> <1>\).

Деление числа на дробь.

Чтобы поделить число на дробь, нужно знаменатель делителя умножить на число, а числитель делителя записать в знаменатель. То есть дробь делитель перевернуть.

Выполните деление числа на дробь.

Что нужно делать при делении дробей

Деление смешанных дробей.

Перед тем как приступить к делению смешанных дробей, их нужно перевести в неправильную дробь, а дальше выполнить деление по правилу деления дроби на дробь.

Выполните деление смешанных дробей.

Деление числа на число.

Чтобы поделить простые числа, нужно представить их в виде дроби и выполнить деление по правилам деления дроби на дробь.

Примечание к теме деление дробей:
На нуль делить нельзя.

Вопросы по теме:
Как делить дроби? Как разделить дробь на дробь?
Ответ: дроби делятся так, первую дробь делимое умножаем на дробь обратную дроби делителя.

Как делить дроби с разными знаменателями?
Ответ: не важно одинаковые или разные знаменатели у дробей, все дроби делятся по правилу деления дроби на дробь.

Пример №1:
Выполните деление и назовите делитель, дробь, обратную делителю: а) \(\frac<5> <9>\div \frac<8><13>\) б) \(2\frac<4> <5>\div 1\frac<7><8>\)

\( \frac<8><13>\) – делитель, \( \frac<13><8>\) – обратная дробь делителя.

\( \frac<15><8>\) – делитель, \( \frac<8><15>\) – обратная дробь делителя.

Пример №2:
Вычислите деление: а) \(5 \div 1\frac<1><4>\) б) \(9\frac<2> <3>\div 8\)

Источник

Деление дробей: теория и практика

Что нужно делать при делении дробей

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие дроби

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление. В 5 классе ребята это уже знают.

Дроби бывают двух видов:

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.

Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1\4.

Основные свойства дроби

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Две дроби a/b и c/d называются равными, если a * d = b * c.

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Курсы обучения математике помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Деление дробных чисел

Деление — арифметическое действие, по которому можно узнать, сколько раз одно число содержится в другом. А еще деление — это обратное действие умножения.

Свойства деления:

1. При делении на единицу получится такое же число:

2. На ноль делить нельзя.

3. Когда делим ноль на любое число, всегда получаем ноль:

4. Когда делим любое число на само себя получаем единичку:

5. Когда делим сумму на какое-либо число, можно разделить на него каждое слагаемое, а потом сложить полученное:

6. Когда делим разность на какое-нибудь число, можно разделить на него уменьшаемое и вычитаемое отдельно и из первого частного вычесть второе:

7. Когда делим произведение двух множителей на число, можно разделить на него любой из множителей и частное умножить на второй множитель:

Записывайся на онлайн обучение по математике, с лучшими учителями! Для учеников с 1 по 11 классы!

Деление обыкновенных дробей

Как делить дробь на дробь? Выполняем следующую последовательность действий:

Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.

Как делить дроби с разными знаменателями? Тут все просто: пользуемся правилами выше, поскольку на практике нам неважно, одинаковые знаменатели или нет.

Деление дроби на натуральное число

Для деления дроби на натуральное число нужно:

Деление натурального числа на дробь

Чтобы поделить натуральное число на обыкновенную дробь нужно:

Деление на смешанное число

Для деления смешанных чисел необходимо:

Если урок в самом разгаре и посчитать нужно быстро — можно воспользоваться онлайн-калькулятором. Вот несколько подходящих:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *