Что не является характеристикой больших данных

Big Data — что это такое? Простыми словами рассказываем о главном

Что не является характеристикой больших данных

Big Data — это область IT-сферы, которая изучает, анализирует, обрабатывает и взаимодействует с большими объемами данных. Биг дата — это все инструменты, подходы, методы обработки всех известных типов больших данных.

Специалисты биг дата чаще всего работают с неструктурированными данными, обработка которых дает структурированные данные в табличном представлении, используемые далее по назначению.

Классификация биг дата

Big Data — это большой объем разноплановых данных, но при этом все данные поддаются классификации и их можно разделить на 3 основные группы:

Как характеризуются биг дата

Любые биг дата можно охарактеризовать 4 особенностями:

Основные термины, окружающие биг дата

Big Data — это большие данные и много различных терминов, связанных с ними и с их обработкой. Несколько популярных терминов:

Заключение

Невзирая на размеры, биг дата — это всегда работа с большим объемом данных. Big Data — это способность использовать большие объемы данных для благих целей. Работа с биг дата имеет очень важное значение в современном мире, поэтому она задействована во многих сферах человеческой деятельности.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Источник

Большие данные: свойства, методы обработки, описание

Что не является характеристикой больших данных

Биг Дата – понятие, которое возникло в современном мире относительно недавно. Но с развитием информационных технологий и IT оно стало занимать все больше места в жизни каждого. Не всем понятно, как работать с соответствующей составляющей, что она собой представляет, а также для чего необходима. В данной статье будут раскрыты ответы на все перечисленные вопросы. А еще каждый сможет выяснить, каким образом удастся стать настоящим Big Data Engineer. Справиться с поставленной задачей не всегда легко, но, если постараться и задаться целью, все обязательно получится.

Определение

Big Дата или большие данные – это некая специальная методика обработки сведений электронного формата. Включает в себя просто огромные объемы информации, которые достигают тысячи Терабайт. Увеличивается их количество постоянно и с большой скоростью.

Если говорить простыми словами, рассматриваемый термин – это большое количество совершенно разных сведений, известных миру, поступающих в «места хранения» на постоянной основе.

Классификация

BigData обладают собственной классификацией. Условно принято разделять все большие сведения на несколько групп:

Работа с большими данными производится только при помощи специальных технологий. Но перед тем, как браться за них, требуется понимать общие принципы анализа, а также особенности BigData.

Внимание: не стоит путать Big Data с базами данных. Это совершенно разные понятия. Второй элемент относительно небольшой по сравнению с рассматриваемым термином.

Свойства

Любой крупной компании (да и мелкой при наличии перспектив роста и развитии) требуется BigData. Определяются они по трем свойствам:

Но с развитием технологий предприятия определили еще несколько важных свойств, которые система аналитики и работы с BigData будет воспринимать при обработке. А именно:

Без перечисленных свойств БигДата не может быть таковой. Если собираются только материалы одного типа, медленно и небольшого объема, к рассматриваемому термину они относиться никак не будут.

Немного истории

Определение Биг Data – это только «верхушка айсберга». Разбираться с соответствующим понятием на самом деле весьма трудно. Особенно если не понимать, как проводить дальнейший анализ материалов.

Первые упоминания Биг Data появились в 60-70-х годах прошлого века. Тогда начался активный рост и развитие информационных технологий. И продолжается подобный прогресс по сей день. Это не может не отражаться на «дате» — то, что еще 10 лет назад казалось огромным объемом, теперь является «мелочью». Чтобы убедиться в этом, достаточно посмотреть на размеры памяти современных девайсов или «вес» выпускаемого софта.

С 2005 года организации начали потихоньку разбираться в масштабах софта пользовательских интернет сервисов – YouTube, OK, VK и так далее. Тогда же появилась одна из первых платформ для работы с большими объемами данных. Она получила названием Hadoop. Сегодня так называют суперкомпьютер, стек, предназначенный для Big Дата. Чуть позже мир узнал об еще одной технологии – NoSQL, которая представлена связью методов, которыми создаются системы управления Big Data.

Этапы работы с «Датой»

Big Дата – это то, с чем обычные технологии не справятся. Для решения тех или иных бизнес-задач задействуются специальные алгоритмы, а также устройства. И обработка ведется в несколько этапов:

У каждого этапа имеются свои проблемы, особенности и предназначение.

Интеграция

Дать определение BigData не так трудно, как обрабатывать большие объемы сведений. Начинается все с интернирования. На данном этапе корпорация внедряет основные информационные технологи (искусственный интеллект и суперкомпьютеры) для сбора больших данных. Сюда же относится введение специальных систем.

В процессе подключаются инструменты форматирования и обработки. Это помогает при дальнейшей работе с Big Data.

Осуществление управления

Рассматриваемую составляющую требуется где-то хранить. Этот вопрос решается заранее. Он напрямую зависит от предпочтительных форматов, а также технологий обработки.

В будущем не возникнет проблем с реализацией управления, если грамотно определить место хранения. Крупные корпорации пользуются облачными сервисами, а также локальными хранилищами. За счет данного приема удается значительно сэкономить финансы и ресурсы предприятия.

Проведение анализа

«Хранилища» полезны для бизнеса не сразу. Их польза начинается с момента анализа. Проводится операция специально обученными людьми – аналитиками Big Data. Данные обрабатываются при помощи разнообразных методик. К ним относят машинное обучение, регрессионный анализ и так далее.

В ходе проведенных манипуляцию осуществляется сортировка данных и их «отсеивание». Результатом становится определение наиболее полезных для конкретной организации электронных материалов. Они отличаются не только полезностью, но и качеством, а также важностью.

Какими методами работают с BigData

Big Data предусматривают различные методы обработки. Они позволяют при помощи всевозможных информационных технологий работать с большим потоком информации. Обычным компьютерам такие задачи не под силу. Искусственный интеллект и нейросети – лидеры в соответствующей сфере.

Работа с данными может производится через:

Все эти варианты используют в определенных целях. Каждый аналитик должен хорошо разбираться в предложенных методах. Это поможет понять, когда и что применять во время контактирования с BigData.

Обучение машинного типа

Эта модель предусматривает:

Так, пользователь работает с огромным источником информации – интернетом. Во время этого происходит считывание сведений, указанных в интернет-обозревателе, а также непосредственно просмотренных веб-страничек. Специальный алгоритм учитывает все это, а затем начинает предлагает юзеру похожие ресурсы.

Машинное обучение помогает искусственному интеллекту без явного программирования прогнозировать различные события и выдачу информации, опираясь на уже известные свойства (которые извлекаются из «обучающих материалов»).

Ассоциации

Еще одно решение для работы с Big Data. Применяется для того, чтобы:

Метод правил ассоциаций распространен в крупных торговых сетях, где для сбора и хранения применяются специальные устройства. Они называются POS-системы.

Древо классификаций

Big Data может помочь:

Для этого используется метод статистической классификации (древа). В ходе реализации осуществляется определение категорий, к которым относятся новейшие и последние появившиеся наблюдения. Это – своеобразный помощник-классификатор.

Социальные сети и настроения

Социальная сеть имеет колоссальное значение для современных юзеров и компаний. Это – огромное хранилище полезной информации, которую можно использовать для разработки всевозможных инновационных бизнес-процессов.

Метод анализа соцсетей способствует:

Также рекомендуется обратить внимание на анализ настроений. Этот вариант необходим при:

Впервые эти методы оказались крайне полезными в телекоммуникации. С развитием IT они стали неотъемлемой частью анализа Big Data для компаний и организаций.

Генетические алгоритмы

Следуют генетические алгоритмы принципам работы эволюции. «Обращают внимание» и опираются на естественный отбор и всевозможных преобразованиях (мутациях).

Регрессионный анализ

Большой объем данных может обрабатываться путем метода регрессионного анализа. Этот поход в Big Data оказывается эффективным при:

В ходе реализации используются независимые переменные. Это помогает уточнять необходимые данные и отслеживать основы влияния зависимыми материалами.

О сборе и обработке

В рассматриваемой и столь большой области приходится задумываться над тем, как собирать данные и обрабатывать их. «С ходу», «просто так» справиться с поставленной задачей не получится. Связано это с тем, что Big Data требует наличия большого пространства, а также ресурсов у задействованных устройств.

С развитием технологий в мире начали появляться и внедряться специальные подходы, которые значительно упрощают перечисленные манипуляции. Вот основные инструменты, задействованные в соответствующей сфере:

Нет смысла использовать сразу все перечисленные инструменты. В зависимости от возможностей и потребностей специалисты выбирают те или иные варианты.

Актуальность и перспективы

Big Data вызывает немало вопросов. Эта область сегодня развивается весьма стремительно, но люди задумываются – а стоит ли вообще углубляться в соответствующую сферу деятельности. Ведь для того, чтобы добиться успеха в качестве аналитика «больших данных», придется изучить и усвоить немало информации.

Ответ однозначен – да. В России, Америке и других развитых странах вместе с «большими сведениями» с 2015 года началось развитие так называемого «блокчейна». Это – отличное дополнение изученного термина, обеспечивающее защиту и конфиденциальность электронных материалов.

Статистика показывает – инвестициями в Big Data занимаются почти все существующие крупные и известные корпорации. Кто-то — больше, кто-то – меньше. Анализ соответствующих данных помогает обнаруживать различные скрытые схемы. Они потребуются при разработке наиболее эффективных и инновационных технологий и бизнес-проектов. А если учесть не только то, какие определение имеет Big Data, но и перспективы развития IT, можно сделать вывод – большие данные со временем окажутся еще более ценными.

Советы будущим специалистам

Стать специалистом в рассмотренной области – дело не из простых. Москва и другие регионы России на данный момент предлагают довольно мало ВУЗов, в которых учат на специалистов пор «большим материалам».

Можно воспользоваться следующими вариантами развития событий:

Чтобы добиться успеха, придется интересоваться IT и математикой, а также информатикой. Знания программирования тоже окажутся не лишними.

Внимание: в России для обучения на BigData Engineer и изучения технологии Big Data чаще всего используются специализированные курсы. Они проводятся как оффлайн, так и онлайн. Вот некоторые из таких профессиональных курсов:

Источник

Big Data: размер имеет значение

Что не является характеристикой больших данных

Leo Matyushkin

Что не является характеристикой больших данных

Термину Big Data более десяти лет, но вокруг него до сих пор много путаницы. Доступно рассказываем, что же такое «большие данные», откуда эти данные берутся и где используются, кто такие аналитики данных и чем они занимаются.

Три признака больших данных

Традиционно большие данные характеризуют тремя признаками (так называемым правилом VVV):

В качестве простейшего примера можно представить таблицу с миллионами строк клиентов крупной компании. Столбцы – это характеристики пользователей (Ф.И.О., пол, дата, адрес, телефон и т. д.), один клиент – одна строка. Информация обновляется постоянно: клиенты приходят и уходят, данные корректируются.

Что не является характеристикой больших данных

Но таблицы – это лишь одна из простейших форм отображения информации. Обычно представление больших данных имеет куда более витиеватый и менее структурированный характер. Так, ниже показана схема базы данных проекта MediaWiki:

Что не является характеристикой больших данных

Большой объем предполагает особую инфраструктуру хранения данных – распределенные файловые системы. Для работы с ними используются реляционные системы управления базами данных. Это требует от аналитика уметь составлять соответствующие запросы к базам данных.

Где живут большие данные?

Инструменты Big Data используются во многих сферах жизни современного человека. Перечислим некоторые из наиболее популярных областей с примерами бизнес-задач:

Для каждой из перечисленных задач можно найти примеры решений с помощью технологий, входящих в сферу Data Science и Machine Learning. Объем используемых данных определяет стратегию и точность решения.

Чем занимаются люди в Big Data?

Анализ Big Data находится на стыке трех областей:

Поэтому аналитик данных – междисциплинарный специалист, обладающий знаниями и в математике, и в программировании, и в базах данных. Вышеперечисленные примеры задач предполагают, что человек должен быстро разбираться в новой предметной области, иметь коммуникативные навыки. Особенно важно уметь находить аналитически обоснованный и полезный для бизнеса результат. Немаловажно грамотно эти выводы визуализировать и презентовать.

Очередность действий в проводимом исследовании примерно сводится к следующему:

Итог работы представляет сжатый отчет с визуализацией результата либо интерактивную панель (dashboard). На такой панели обновляемые данные после обработки предстают в удобной для восприятия форме.

Ключевые навыки и инструменты аналитика

Навыки и соответствующие инструменты, применяемые аналитиками, обычно следующие:

Выбор языка программирования диктуется имеющимися наработками и необходимой скоростью конечного решения. Язык определяет среду разработки и инструменты анализа данных.

Большинство аналитиков используют в качестве языка программирования Python. В этом случае для анализа больших обычно применяется Pandas. При работе в команде общепринятым стандартом документов для хранения и обмена гипотезами являются ipynb-блокноты, обычно обрабатываемые в Jupyter. Этот формат представления данных позволяет совмещать ячейки с программным кодом, текстовые описания, формулы и изображения.

Что не является характеристикой больших данных

Выбор инструментария для решения задачи зависит от кейса и требований заказчика к точности, надежности и скорости выполнения алгоритма решения. Также важна возможность объяснить составляющие алгоритма от этапа ввода данных до вывода результата.

Так, для задач, связанных с обработкой изображений, чаще применяются нейросетевые инструменты, такие как TensorFlow или один из десятка других фреймворков глубокого обучения. Но, к примеру, при разработке финансовых инструментов нейросетевые решения могут выглядеть «опасными», ведь проследить путь нахождения результата оказывается затруднительно.

Что не является характеристикой больших данных

Выбор модели анализа и ее архитектуры не менее тривиален, чем вычислительный процесс. Из-за этого в последнее время развивается направление автоматического машинного обучения. Данный подход вряд ли сократит потребность в аналитиках данных, но уменьшит число рутинных операций.

Как разобраться в Big Data?

Как можно понять из приведенного обзора, большие данные предполагают от аналитика и большой объем знаний их различных областей. Разобраться с основами поможет наш учебный план. Если захочется углубиться и попытаться последовательно охватить все аспекты вопроса, изучите roadmap Data Science:

Что не является характеристикой больших данных

В упомянутом репозитории вы также найдете краткие описания и ссылки к некоторым из компонентов карты.

С чего начать, если хочется попробовать прямо сейчас, но нет данных?

Опытные аналитики советуют пораньше знакомиться с Kaggle. Это популярная платформа для организации конкурсов по анализу больших объемов данных. Здесь найдутся не только соревнования с денежными призами за первые места, но и ipynb-блокноты с идеями и решениями, а также интересные датасеты (наборы данных) различного объема.

Источник

Big data

Определение Big data обычно расшифровывают довольно просто – это огромный объем информации, часто бессистемной, которая хранится на каком либо цифровом носителе. Однако массив данных с приставкой «Биг» настолько велик, что привычными средствами структурирования и аналитики «перелопатить» его невозможно. Поэтому под термином «биг дата» понимают ещё и технологии поиска, обработки и применения неструктурированной информации в больших объемах.

Что не является характеристикой больших данных

Экскурс в историю и статистику

Из статистических выкладок аналитических агентств в 2005 году мир оперировал 4-5 эксабайтами информации (4-5 миллиардов гигабайтов), через 5 лет объемы big data выросли до 0,19 зеттабайт (1 ЗБ = 1024 ЭБ). В 2012 году показатели возросли до 1,8 ЗБ, а в 2015 – до 7 ЗБ. Эксперты прогнозируют, что к 2020 году системы больших данных будут оперировать 42-45 зеттабайтов информации.

Что не является характеристикой больших данных

До 2011 года технологии больших данных рассматривались только в качестве научного анализа и практического выхода ни имели. Однако объемы данных росли по экспоненте и проблема огромных массивов неструктурированной и неоднородной информации стала актуальной уже в начале 2012 году. Всплеск интереса к big data хорошо виден в Google Trends.

Что не является характеристикой больших данных

К развитию нового направления подключились мастодонты цифрового бизнеса – Microsoft, IBM, Oracle, EMC и другие. С 2014 года большие данные изучают в университетах, внедряют в прикладные науки – инженерию, физику, социологию.

Как работает технология big data?

Чтобы массив информации обозначить приставкой «биг» он должен обладать следующими признаками:

Что не является характеристикой больших данных

В современных системах рассматриваются два дополнительных фактора:

Принцип работы технологии big data основан на максимальном информировании пользователя о каком-либо предмете или явлении. Задача такого ознакомления с данными – помочь взвесить все «за» и «против», чтобы принять верное решение. В интеллектуальных машинах на основе массива информации строится модель будущего, а дальше имитируются различные варианты и отслеживаются результаты.

Что не является характеристикой больших данных

Современные аналитические агентства запускают миллионы подобных симуляций, когда тестируют идею, предположение или решают проблему. Процесс автоматизирован.

К источникам big data относят:

Принципы работы с массивами данных включают три основных фактора:

Для чего используют?

Чем больше мы знаем о конкретном предмете или явлении, тем точнее постигаем суть и можем прогнозировать будущее. Снимая и обрабатывая потоки данных с датчиков, интернета, транзакционных операций, компании могут довольно точно предсказать спрос на продукцию, а службы чрезвычайных ситуаций предотвратить техногенные катастрофы. Приведем несколько примеров вне сферы бизнеса и маркетинга, как используются технологии больших данных:

Методики анализа и обработки

Что не является характеристикой больших данных

К основным способам анализа больших массивов информации относят следующие:

Большие данные в бизнесе и маркетинге

Стратегии развития бизнеса, маркетинговые мероприятия, реклама основаны на анализе и работе с имеющимися данными. Большие массивы позволяют «перелопатить» гигантские объемы данных и соответственно максимально точно скорректировать направление развития бренда, продукта, услуги.

Например, аукцион RTB в контекстной рекламе работают с big data, что позволяет эффективно рекламировать коммерческие предложения выделенной целевой аудитории, а не всем подряд.

Какие выгоды для бизнеса:

Технологии используют в прогнозировании популярности продуктов, например, с помощью сервиса Google Trends и Яндекс. Вордстат (для России и СНГ).

Что не является характеристикой больших данных

Методики big data используют все крупные компании – IBM, Google, Facebook и финансовые корпорации – VISA, Master Card, а также министерства разных стран мира. Например, в Германии сократили выдачу пособий по безработице, высчитав, что часть граждан получают их без оснований. Так удалось вернуть в бюджет около 15 млрд. евро.

Недавний скандал с Facebook из-за утечки данных пользователей говорит о том, что объемы неструктурированной информации растут и даже мастодонты цифровой эры не всегда могут обеспечить их полную конфиденциальность.

Что не является характеристикой больших данных

Например, Master Card используют большие данные для предотвращения мошеннических операций со счетами клиентов. Так удается ежегодно спасти от кражи более 3 млрд. долларов США.

В игровой сфере big data позволяет проанализировать поведение игроков, выявить предпочтения активной аудитории и на основе этого прогнозировать уровень интереса к игре.

Что не является характеристикой больших данных

Сегодня бизнес знает о своих клиентах больше, чем мы сами знаем о себе – поэтому рекламные кампании Coca-Cola и других корпораций имеют оглушительный успех.

Перспективы развития

В 2019 году важность понимания и главное работы с массивами информации возросла в 4-5 раз по сравнению с началом десятилетия. С массовостью пришла интеграция big data в сферы малого и среднего бизнеса, стартапы:

Резюме

Мы изучили, что такое big data? Рассмотрели, как работает эта технология, для чего используются массивы информации. Познакомились с принципами и методиками работы с большими данными.

Рекомендуем к прочтению книгу Рика Смолана и Дженнифер Эрвитт «The Human Face of Big Data», а также труд «Introduction to Data Mining» Майкла Стейнбаха, Випин Кумар и Панг-Нинг Тан.

Источник

Что такое Big data: собрали всё самое важное о больших данных

Что не является характеристикой больших данных

Редактор блока «Технологии и бизнес».

Что такое Big data, как это работает и почему все носятся с данными как с писаной торбой: Rusbase объясняет на пальцах для тех, кто немного отстал от жизни.

Что такое Big data

Только ленивый не говорит о Big data, но что это такое и как это работает — понимает вряд ли. Начнём с самого простого — терминология. Говоря по-русски, Big data — это различные инструменты, подходы и методы обработки как структурированных, так и неструктурированных данных для того, чтобы их использовать для конкретных задач и целей.

Неструктурированные данные — это информация, которая не имеет заранее определённой структуры или не организована в определённом порядке.

Термин «большие данные» ввёл редактор журнала Nature Клиффорд Линч ещё в 2008 году в спецвыпуске, посвящённом взрывному росту мировых объёмов информации. Хотя, конечно, сами большие данные существовали и ранее. По словам специалистов, к категории Big data относится большинство потоков данных свыше 100 Гб в день.

Читайте также: Как зарождалась эра Big data

Сегодня под этим простым термином скрывается всего два слова — хранение и обработка данных.

Big data — простыми словами

В современном мире Big data — социально-экономический феномен, который связан с тем, что появились новые технологические возможности для анализа огромного количества данных.

Читайте также: Мир Big data в 8 терминах

Кеннет Кукьер: Большие данные — лучшие данные

Технология Big data

Огромные объёмы данных обрабатываются для того, чтобы человек мог получить конкретные и нужные ему результаты для их дальнейшего эффективного применения.

Читайте также: Big data: анализ и структурирование

Фактически, Big data — это решение проблем и альтернатива традиционным системам управления данными.

Техники и методы анализа, применимые к Big data по McKinsey:

Технологии:

Читайте также: Big data: семантический анализ данных и машинное обучение

Для больших данных выделяют традиционные определяющие характеристики, выработанные Meta Group ещё в 2001 году, которые называются «Три V»:

Big data: применение и возможности

Объёмы неоднородной и быстро поступающей цифровой информации обработать традиционными инструментами невозможно. Сам анализ данных позволяет увидеть определённые и незаметные закономерности, которые не может увидеть человек. Это позволяет оптимизировать все сферы нашей жизни — от государственного управления до производства и телекоммуникаций.

Например, некоторые компании ещё несколько лет назад защищали своих клиентов от мошенничества, а забота о деньгах клиента — забота о своих собственных деньгах.

Сюзан Этлиджер: Как быть с большими данными?

Решения на основе Big data: «Сбербанк», «Билайн» и другие компании

У «Билайна» есть огромное количество данных об абонентах, которые они используют не только для работы с ними, но и для создания аналитических продуктов, вроде внешнего консалтинга или IPTV-аналитики. «Билайн» сегментировали базу и защитили клиентов от денежных махинаций и вирусов, использовав для хранения HDFS и Apache Spark, а для обработки данных — Rapidminer и Python.

Читайте также: «Большие данные дают конкурентное преимущество, поэтому не все хотят о них рассказывать»

Или вспомним «Сбербанк» с их старым кейсом под названием АС САФИ. Это система, которая анализирует фотографии для идентификации клиентов банка и предотвращает мошенничество. Система была внедрена ещё в 2014 году, в основе системы — сравнение фотографий из базы, которые попадают туда с веб-камер на стойках благодаря компьютерному зрению. Основа системы — биометрическая платформа. Благодаря этому, случаи мошенничества уменьшились в 10 раз.

Big data в мире

По данным компании IBS, к 2003 году мир накопил 5 эксабайтов данных (1 ЭБ = 1 млрд гигабайтов). К 2008 году этот объем вырос до 0,18 зеттабайта (1 ЗБ = 1024 эксабайта), к 2011 году — до 1,76 зеттабайта, к 2013 году — до 4,4 зеттабайта. В мае 2015 года глобальное количество данных превысило 6,5 зеттабайта (подробнее).

К 2020 году, по прогнозам, человечество сформирует 40-44 зеттабайтов информации. А к 2025 году вырастет в 10 раз, говорится в докладе The Data Age 2025, который был подготовлен аналитиками компании IDC. В докладе отмечается, что большую часть данных генерировать будут сами предприятия, а не обычные потребители.

Аналитики исследования считают, что данные станут жизненно-важным активом, а безопасность — критически важным фундаментом в жизни. Также авторы работы уверены, что технология изменит экономический ландшафт, а обычный пользователь будет коммуницировать с подключёнными устройствами около 4800 раз в день.

Рынок Big data в России

Читайте также: Как устроен рынок Big data в России

Что касается рынка данных, он в России только зарождается. Внутри экосистемы RTB поставщиками данных выступают владельцы программатик-платформ управления данными (DMP) и бирж данных (data exchange). Телеком-операторы в пилотном режиме делятся с банками потребительской информацией о потенциальных заёмщиках.

15 сентября в Москве состоится конференция по большим данным Big Data Conference. В программе — бизнес-кейсы, технические решения и научные достижения лучших специалистов в этой области. Приглашаем всех, кто заинтересован в работе с большими данными и хочет их применять в реальном бизнесе. Следите за Big Data Conference в Telegram, на Facebook и «ВКонтакте».

Обычно большие данные поступают из трёх источников:

Big data в банках

Помимо системы, описанной выше, в стратегии «Сбербанка» на 2014-2018 гг. говорится о важности анализа супермассивов данных для качественного обслуживания клиентов, управления рисками и оптимизации затрат. Сейчас банк использует Big data для управления рисками, борьбы с мошенничеством, сегментации и оценки кредитоспособности клиентов, управления персоналом, прогнозирования очередей в отделениях, расчёта бонусов для сотрудников и других задач.

«ВТБ24» пользуется большими данными для сегментации и управления оттоком клиентов, формирования финансовой отчётности, анализа отзывов в соцсетях и на форумах. Для этого он применяет решения Teradata, SAS Visual Analytics и SAS Marketing Optimizer.

Читайте также: Кто делает Big data в России?

«Альфа-Банк» за большие данные взялся в 2013 году. Банк использует технологии для анализа соцсетей и поведения пользователей сайта, оценки кредитоспособности, прогнозирования оттока клиентов, персонализации контента и вторичных продаж. Для этого он работает с платформами хранения и обработки Oracle Exadata, Oracle Big data Appliance и фреймворком Hadoop.

«Тинькофф-банк» с помощью EMC Greenplum, SAS Visual Analytics и Hadoop управляет рисками, анализирует потребности потенциальных и существующих клиентов. Большие данные задействованы также в скоринге, маркетинге и продажах.

Big data в бизнесе

Для оптимизации расходов внедрил Big data и «Магнитогорский металлургический комбинат», который является крупным мировым производителем стали. В конце прошлого года они внедрили сервис под названием «Снайпер», который оптимизирует расход ферросплавов и других материалов при производстве. Сервис обрабатывает данные и выдаёт рекомендации для того, чтобы сэкономить деньги на производстве стали.

Читайте также: Как заставить большие данные работать на ваш бизнес

Большие данные и будущее — одна из самых острых тем для обсуждения, ведь в основе коммерческой деятельности лежит информация. Идея заключается в том, чтобы «скормить» компьютеру большой объем данных и заставить его отыскивать типовые алгоритмы, которые не способен увидеть человек, или принимать решения на основе процента вероятности в том масштабе, с которым прекрасно справляется человек, но который до сих пор не был доступен для машин, или, возможно, однажды — в таком масштабе, с которым человек не справится никогда.

Читайте также: 6 современных тенденций в финансовом секторе

Чтобы оптимизировать бизнес-процессы,«Сургутнефтегаз» воспользовался платформой данных и приложений «in-memory» под названием SAP HANA, которая помогает в ведении бизнеса в реальном времени. Платформа автоматизирует учёт продукции, расчёт цен, обеспечивает сотрудников информацией и экономит аппаратные ресурсы. Как большие данные перевернули бизнес других предприятий — вы можете прочитать здесь.

Big data в маркетинге

Благодаря Big data маркетологи получили отличный инструмент, который не только помогает в работе, но и прогнозирует результаты. Например, с помощью анализа данных можно вывести рекламу только заинтересованной в продукте аудитории, основываясь на модели RTB-аукциона.

Читайте также: Чем полезны большие данные для рекламного бизнеса?

Big data позволяет маркетологам узнать своих потребителей и привлекать новую целевую аудиторию, оценить удовлетворённость клиентов, применять новые способы увеличения лояльности клиентов и реализовывать проекты, которые будут пользоваться спросом.

Сервис Google.Trends вам в помощь, если нужен прогноз сезонной активности спроса. Всё, что надо — сопоставить сведения с данными сайта и составить план распределения рекламного бюджета.

Читайте также: Большие данные должны приносить практическую пользу бизнесу – или умереть

Биг дата изменит мир?

От технологий нам не спрятаться, не скрыться. Big data уже меняет мир, потихоньку просачиваясь в наши города, дома, квартиры и гаджеты. Как быстро технология захватит планету — сказать сложно. Одно понятно точно — держись моды или умри в отстое, как говорил Боб Келсо в сериале «Клиника».

А что вам интересно было бы узнать о больших данных? Пишите в комментариях 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *