Что называют солнечной радиацией

Радиация Солнца

Что называют солнечной радиацией. Смотреть фото Что называют солнечной радиацией. Смотреть картинку Что называют солнечной радиацией. Картинка про Что называют солнечной радиацией. Фото Что называют солнечной радиацией

Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере (см. Инсоляция). Количество солнечной радиации зависит от высоты солнца, времени года, прозрачности атмосферы. Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени (см. Солнечная постоянная).

Влияние солнечной радиации на климат

Что называют солнечной радиацией. Смотреть фото Что называют солнечной радиацией. Смотреть картинку Что называют солнечной радиацией. Картинка про Что называют солнечной радиацией. Фото Что называют солнечной радиацией

Источник

Солнечная радиация

Из Википедии — свободной энциклопедии

Что называют солнечной радиацией. Смотреть фото Что называют солнечной радиацией. Смотреть картинку Что называют солнечной радиацией. Картинка про Что называют солнечной радиацией. Фото Что называют солнечной радиацией

Солнечная радиация — электромагнитное и корпускулярное излучение Солнца. Данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).

Солнечная радиация измеряется мощностью переносимой ею энергии на единицу площади поверхности (Вт/м 2 ) (см. Солнечная постоянная). В целом, Земля получает от Солнца менее 0,5×10 −9 (одной двухмиллиардной) от энергии его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн (солнечные радио-всплески) [1] до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Подавляющая доля частиц задерживается А атмосферой Земли, либо поглощается верхними слоями земной атмосферы, поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

Источник

Что называют солнечной радиацией

Подробное решение параграф § 21 по географии для учащихся 8 класса, авторов А. И. Алексеев, В. В. Николина, Е. К. Липкина 2016

1. Что называется солнечной радиацией? В каких единицах она измеряется? От чего зависит её величина?

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях или джоулях на один квадратный сантиметр в минуту. Солнечная радиация распределяется по земле неравномерно. Это зависит:

— от плотности и влажности воздуха – чем они выше, тем меньше радиации получает земная поверхность;

— от географической широты местности – количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади;

— от годового и суточного движения Земли – в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

— от характера земной поверхности – чем светлее поверхность, тем больше солнечных лучей она отражает.

2. На какие виды разделяют солнечную радиацию?

Существуют следующие виды Солнечной радиации: радиация, достигающая земной поверхности, состоит из прямой и рассеянной. Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию. Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

3. Почему меняется поступление солнечной радиации по сезонам года?

Россия, в своем большинстве, расположена в умеренных широтах, лежащих между тропиком и полярным кругом, в этих широтах Солнце каждый день восходит и заходит, но никогда не бывает в зените. Благодаря тому, что угол наклона Земли не изменен в течение всего её обращения вокруг Солнца, в разные сезоны количество приходящего тепла, в умеренных широтах, различно и зависит от угла Солнца над горизонтом. Так, на широте 450 mах угол падения солнечных лучей (22 июня) составляет приблизительно 680, а min (22 декабря) приблизительно 220. Чем меньше угол падения лучей Солнца, тем меньше тепла они приносят, поэтому отмечаются существенные сезонные различия получаемой солнечной радиации в разные сезоны года: зимы, весны, лета, осени.

4. Для чего необходимо знать высоту Солнца над горизонтом?

Высота Солнца над горизонтом определяет количество тепла приходящего на Землю, поэтому между углом падения солнечных лучей и количеством солнечной радиации, приходящей на земную поверхность, существует прямая зависимость. От экватора к полюсам в целом наблюдается уменьшение угла падения солнечных лучей, и как следствие от экватора к полюсам уменьшается величина солнечной радиации. Таким образом, зная высоту Солнца над горизонтом, можно узнать количество тепла приходящего на земную поверхность.

5. Выберите верный ответ. Общее количество радиации, достигшей поверхности Земли, называется: а) поглощённой радиацией; б) суммарной солнечной радиацией; в) рассеянной радиацией.

6. Выберите верный ответ. При движении к экватору величина суммарной солнечной радиации: а) увеличивается; б) уменьшается; в) не изменяется.

7. Выберите верный ответ. Самый большой показатель отражённой радиации имеет: а) снег; б) чернозём; в) песок; г) вода.

8. Как вы думаете, можно ли в летний пасмурный день загореть?

Суммарная солнечная радиация состоит из двух составляющих: рассеянной и прямой. При этом Солнечные лучи, независимости от своей природы несут в себе ультрафиолет, который и влияет на загар.

9. По карте на рисунке 36 определите суммарную солнечную радиацию для десяти городов России. Какой вывод вы сделали?

Суммарная радиация в разных городах России:

— Мурманск: 10 ккал/см2 в год;

— Архангельск: 30 ккал/см2 в год;

— Москва: 40 ккал/см2 в год;

— Пермь: 40 ккал/см2 в год;

— Казань: 40 ккал/см2 в год;

— Челябинск: 40 ккал/см2 в год;

— Саратов: 50 ккал/см2 в год;

— Волгоград: 50 ккал/см2 в год;

— Астрахань: 50 ккал/см2 в год;

— Ростов-на-Дону: более 50 ккал/см2 в год;

Общая закономерность в распределении солнечной радиации такова: чем ближе объект (город) к полюсу, тем меньше солнечной радиации приходиться на него (город).

10. Опишите, чем различаются сезоны года в вашей местности (природные условия, жизнь людей, их занятия). В какой из сезонов года жизнь наиболее активна?

Источник

Солнечная радиация

Солнечная радиация измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м2) (см. Солнечная постоянная). В целом, Земля получает от Солнца менее 0,5×10−9 (одной двухмиллиардной) от энергии его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей.

Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн (Солнечные радио всплески) до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Подавляющая доля частиц задерживается магнитным полем Земли, либо поглощается верхними слоями земной атмосферы, поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

ВОЗ признала солнечную радиацию достоверным канцерогеном.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Воздушные массы — большие объёмы воздуха в нижней части земной атмосферы — тропосфере, имеющие горизонтальные размеры во много сотен или несколько тысяч километров и вертикальные размеры в несколько километров, характеризующиеся примерной однородностью температуры и влагосодержания по горизонтали.

В настоящее время Марс — наиболее интересная для изучения планета Солнечной системы. Поскольку он обладает атмосферой, хотя и очень разреженной, по сравнению с земной, можно говорить о процессах в ней, формирующих погоду, а следовательно, и климат. Он не особо благоприятен для человека, однако наиболее близок к существующему на нашей планете. Предположительно в прошлом климат Марса мог быть более тёплым и влажным, а на поверхности присутствовала жидкая вода и даже шли дожди.

Источник

СОЛНЕЧНАЯ РАДИАЦИЯ

Смотреть что такое СОЛНЕЧНАЯ РАДИАЦИЯ в других словарях:

СОЛНЕЧНАЯ РАДИАЦИЯ

Все процессы на поверхности земного шара, — каковы бы они ни были, — имеют своим источником солнечную энергию. Изучаются ли процессы чисто механические. смотреть

СОЛНЕЧНАЯ РАДИАЦИЯ

излучение Солнца электромагнитной и корпускулярной природы. С. р. — основной источник энергии для большинства процессов, происходящих на Земле. смотреть

СОЛНЕЧНАЯ РАДИАЦИЯ

СОЛНЕЧНАЯ РАДИАЦИЯ

Солнечная радиация — Все процессы на поверхности земного шара, — каковы бы они ни были, — имеют своим источником солнечную энергию. Изучаются ли процессы чисто механические, процессы химические в воздухе, воде, почве, процессы ли физиологические или какие бы то ни было вообще, — первичной причиной всех их без исключения оказывается Солнце. Во всех этих процессах происходит только одно из превращений той начальной энергии, которую посылает на Землю в виде своих лучей это центральное светило нашей планетной системы. В сравнении с этим основным источником энергии, потребляемой земным шаром, другие ее источники: излучение звезд, собственная теплота Земли, различные космические процессы, — все они величины бесконечно малые. Поэтому вопрос о количестве энергии, проникающей на земную поверхность от Солнца, есть основной вопрос всей физики земного шара, — метеорологии. Вся эта наука — не что иное, как изучение и подсчет прихода и расхода, актива и пассива энергии, получаемой Землей от Солнца. Под термином «солнечная радиация» и разумеют обыкновенно ту энергию, которую излучает Солнце и которая, будучи перехвачена земным шаром, и является на этом последнем первичным источником, — primum mobile, — всех явлений и процессов неорганического и животного миров. — Не будь земная поверхность защищена от непосредственного действия солнечных лучей воздушной оболочкой, облекающею ее мощным слоем до нескольких сот километров толщиной, изучение той части С. радиации, которая приходится на долю Земли, было бы делом очень несложным. Измерив раз только в определенный момент и в определенном месте напряженность С. радиации, мы могли бы уже затем при помощи элементарно простых формул предвычислить количество энергии в любой момент и в какой угодно точке земного шара. Присутствие атмосферы, обладающей свойством поглощать в весьма заметной степени солнечные лучи, — и притом различные лучи весьма неодинаково, — значительно усложняет дело. Допустим сначала, что атмосфера обладает совершенною прозрачностью и что, следовательно, до земной поверхности доходит целиком вся та энергия, которая перехватывается земным шаром. Так как количество энергии, получаемое данной поверхностью, пропорционально синусу угла, составляемого падающим пучком лучей с принимающей поверхностью, то основным элементом, определяющим интенсивность радиации на земной поверхности для любого пункта, будет высота Солнца над горизонтом; ею определится не только напряжение лучей в данный момент, но и вся сумма энергии, полученная единицей земной поверхности за определенный промежуток времени, может быть вычислена по высотам Солнца. Соответственно изменению высоты Солнца над горизонтом в течение суток, суточный ход С. радиации будет весьма прост. От момента восхода Солнца радиация быстро возрастает с поднятием светила над горизонтом; затем, достигнув довольно значительной величины, она начинает меняться более медленно, пока около полудня не достигнет максимума. После полудня кривая радиации совершенно симметрично опускается сначала медленно, затем ближе к закату Солнца весьма быстро. Так как с изменением широты места для одного и того же дня будут изменяться полуденные высоты Солнца и продолжительность дня, то получаемое в течение суток количество энергии зависит от широты места. Количество получаемой от источника данной поверхностью энергии будет, далее, обратно пропорционально квадратам расстояний этой поверхности от источника. Поэтому годовой ход С. радиации для одного и того же места определится не только полуденными высотами Солнца и продолжительностью дня, изменяющимися в зависимости от времени года, но еще и расстоянием Земли от Солнца. На экваторе продолжительность дня и ночи в течение всего года одна и та же; количество энергии, получаемое единицей земной поверхности за сутки, будет здесь наибольшее в равноденствия, когда полуденное Солнце стоит в зените места, наименьшее в солнцестояния, когда высоты Солнца в полдень уменьшаются до 66°33‘. Так как, сверх того, расстояние Земли от Солнца в перигелии и афелии не одинаковы, то в годовом ходе радиации здесь будут два минимума неодинаковой величины в солнцестояния и два максимума в равноденствия. Июньский минимум, соответствующий наибольшему расстоянию Земли от Солнца, будет значительнее, нежели декабрьский, падающий на ближайшее расстояние между Солнцем и Землей. Можно было бы, соответственно этому, думать, что количества энергии, получаемые Землей от сентябрьского до мартовского равноденствия будет больше, нежели получаемое от мартовского до сентябрьского равноденствия. Однако, это — не так: большее удаление Земли от Солнца в афелии (март — сентябрь) уравновешивается большей его продолжительностью (от мартовского до сентябрьского равноденствия — 186 дней), тогда как другое полугодие, соответствующею меньшему расстоянию между Землей и Солнцем, короче (между сентябрьским и мартовским равноденствиями — 179 дней). Количества энергии, получаемые Землей за оба полугодия, оказываются таким образом близко равными. При удалении от экватора к северу нетрудно убедиться, что декабрьский минимум будет все более и более углубляться по мере уменьшения полуденных высот Солнца и продолжительности дня, а июньский минимум постепенно будет делаться все менее и менее заметным; максимумы от моментов равноденствия будут сближаться между собой, пока не сольются в один общий, приходящийся на июнь. При этом оказывается; что по вычислениям количество энергии, получаемое в летний день единицей поверхности Земли за сутки, будет по мере удаления от экватора возрастать; это является, впрочем, совершенно понятным, так как с удалением от экватора возрастает и продолжительность летнего дня. На полюсе, наконец, где Солнце в течение целых шести месяцев остается над горизонтом, количество энергии, получаемой единицей земной поверхности в летний день, будет наибольшее, так как Солнце светит здесь все 24 часа. Кривая годового хода С. радиации от момента весеннего равноденствия будет здесь быстро возрастать до летнего солнцестояния и затем столь же быстро падать с приближением к осеннему равноденствию. То же самое, — только с обратным расположением максимумов и минимумов, — будет иметь место в годовом ходе и для южного полушария. Если, теперь, от сделанного допущения о полной прозрачности атмосферы для солнечных лучей перейти к действительности, то из наблюдений оказывается, что до земной поверхности доходит только некоторая часть той энергии, которая приносится лучами на пределы атмосферы; остальное поглощается самой атмосферой. Если обозначить через 1 все количество энергии, приносимой солнечными лучами, то до земной поверхности только в наилучшем случае дойдет часть, не превосходящая 0,8. Принято вообще отношение количества энергии, дошедшей до земной поверхности, к тому количеству, которое в действительности падает на пределы атмосферы, называть коэффициентом прозрачности атмосферы. Количество энергии, поглощаемое атмосферой, будет зависеть от массы воздуха, пройденной лучом; а эта последняя будет тем больше, чем длиннее путь, проходимый лучами в атмосфере и чем плотнее слои проходимого воздуха. Следовательно, поглощение лучей атмосферой будет тем больше, чем меньше высота Солнца над горизонтом. Масса воздуха, проходимая лучами, может быть вычислена по формуле Ламберта: е = √h 2 + 2rh + r 2 Cos 2 z — rCosz, где е — длина пути, проходимого солнечным лучом в атмосфере, h — высота атмосферы, которая может быть принята за единицу, r — длина радиуса земного шара и z — зенитное расстояние Солнца. Когда масса воздуха, встречаемого лучом, или, — что то же, — длина его пути известна, количество лучей, дошедшее до поверхности Земли, определится по закону Бугера (Bouguer), по которому «для среды с известным коэффициентом прозрачности количества прошедшей через нее энергии убывают в прогрессии геометрической, тогда как массы проходимой лучом среды возрастают в прогрессии арифметической». Если обозначить через i — количество энергии у поверхности Земли, чрез J — то же количество у предела атмосферы, d — коэффициент прозрачности атмосферы и е — массу атмосферы, то, по закону Бугера i = Jp e На основании этого закона, зная р, можно вычислить, каков будет ход С. радиации в присутствии атмосферы. При p — 0,75, — величина, близкая к той, которую дают наблюдения, при самой большой прозрачности воздуха, пунктирные кривые на фигуре 1 дают понятие о тех изменениях, который получатся в годовом ходе солнечной радиации под влиянием атмосферы. Фиг. 1. Непосредственные измерения показывают, однако, что в действительности явление получается еще сложнее. В атмосфере имеется всегда некоторое количество водяных паров, сильно поглощающих солнечные лучи. Количество паров в данном объеме или данной массе воздуха есть величина переменная, зависящая от температуры и от степени насыщения воздуха. Поэтому предвычислить влияние паров на поглощение солнечной энергии в атмосфере очень затруднительно. Наблюдения Савельева в Киеве, Крова в Монпелье, Колли и Мышкина в Петровско-Разумовском, близ Москвы, значительно осветили влияние этого фактора на солнечную радиацию и показали, что только в ясные, безоблачные зимние дни, когда количество паров в атмосфере очень невелико, кривая суточного хода радиации приближается к своему теоретическому виду (кривая aa‘a на фиг. 2. В летние дни на той же кривой около полудня появляется второстепенный минимум (кривая bb‘b), благодаря тому, что с возрастанием температуры к полудню увеличивается, вследствие испарения, и количество паров в воздух; поглощение лучей атмосферой также растет с увеличением паров; вследствие этого кривая к полудню и падает. Фиг. 2. Наибольшее количество энергии получается земной поверхностью в ясный весенний день (кривая сс‘с); но и здесь уже второстепенный минимум около полудня ясно заметен. Нечто подобное получается и в годовом ходе радиации по непосредственным наблюдениям в Киеве. Кривая годового хода, быстро возрастая от зимы к весне и лету, достигает своего максимума не во время солнцестояния, а в мае месяце, после чего она обнаруживает слабый второстепенный минимум, зависящий от возрастания количества паров в воздухе. В сентябре наблюдается вторичный, более слабый максимум. Количество энергии, приносимой солнечными лучами на земную поверхность, сделалось предметом точных изменений только в последнее время, когда были выработаны методы для его изучения. При измерениях энергия солнечных лучей поглощается зачерненной поверхностью, покрытой обыкновенно сажей, и переводится вся таким образом в теплоту, которая и тратится на нагревание этой поверхности; это-то нагревание собственно и измеряется. Поверхность для полной определенности и сравнимости всех наблюдений ставится всегда перпендикулярно к падающим на нее лучам. Результаты измерения выражаются обыкновенно количеством малых калорий, поглощенных поверхностью в 1 кв. стм в течение 1 минуты. Основанные на этих началах приборы, известные под названием актинометров и пиргелиометров, были уже описаны в соответственных местах (см. соотв. статью). При актинометрических измерениях получается всегда интенсивность радиации на пластинку, поставленную нормально к падающему на нее лучу; поэтому непосредственные измерения дают в ясный, солнечный день величины, большие изображенных на фиг. 2 пунктиром; получаемые при непосредственных наблюдениях данные изображены на той же фиг. сплошными линиями. Для получения из этих чисел энергии, приходящейся на единицу горизонтальной земной поверхности, приходится результаты наблюдений умножить на синусы высот Солнца, что и дает пунктирные кривые. Производимые систематически или записываемые самими приборами автоматически наблюдения над С. радиацией дали возможность определить с достаточной вероятностью факторы, входящие в уравнение, выражающее закон Бугера. Для величины J, т. е. для интенсивности С. радиации на пределе атмосферы, называемой обыкновенно солнечной постоянной, наиболее вероятные значения, по наблюдениям Лэнглея, Крова и Савельева, колеблются между 3,0 и 3,5 калорий на см 2 в мин.; для p — коэффициента прозрачности атмосферы, значения колеблются между 0,8 и 0,5, в зависимости от различных обстоятельств, — главнейшим образом от содержания в воздухе паров и пыли. Здесь, конечно, разумеются ясные дни. При пасмурной погоде эти величины очень малы, об этом см. также — Лучистая теплота. Измерения при помощи актинометров и пиргелиометров достаточно сложны для обыкновенных метеорологических станций. Поэтому наблюдатели этих последних, для составления себе грубого представления о ходе С. радиации, пользуются гелиографами (см.). Этот прибор измеряет, собственно говоря, даже и не интенсивность С. радиации, а только продолжительность сияния Солнца в течение суток. Но даже и эти данные представляют значение для науки и жизни. Помимо того, что воздух сам поглощает лучи Солнца, плавающие в нем облака, становясь на пути лучей, заграждают им доступ к земной поверхности. Эти-то облака и записывает гелиограф. Зная по нему время, когда Солнце светило беспрепятственно на Землю, можно, хотя только с очень грубым приближением, составить себе понятие о С. радиации в течение суток. Для ознакомления с современным состоянием вопроса о С. радиации — см. курсы Augot, «Trait é élémentaire de Mété orologie» (Пар., 1899); Лачинов, «Основы метеорологии и климатологии» (СПб. 1895). Г. Любославский.

СОЛНЕЧНАЯ РАДИАЦИЯ

Обычно имеется в виду электромагнитная радиация Солнца, распространяющаяся в пространстве в виде электромагнитных волн со скоростью почти 300 000 км/с и проникающая в земную атмосферу. До земной поверхности она доходит в виде прямой и рассеянной радиации. Энергия С. Р. называется лучистой энергией Солнца. С. Р. является основным источником энергии атмосферных процессов; она обычно измеряется по ее тепловому действию и выражается в калориях за единицу времени на единицу поверхности. На границе атмосферы на среднем расстоянии Земли от Солнца поток С. Р. около 2 кал/см 2 ·мин (солнечная постоянная); всего Земля получает от Солнца 2,4·10 18 кал лучистой энергии в 1 мин. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, с максимумом при 0,475 мкм. Около 48% энергии приходится на видимую часть спектра (λ=0,40÷0,76 мкм), 7%—на ультрафиолетовую (λ 0,76 мкм).

Проходя сквозь земную атмосферу, С. Р. изменяется и по интенсивности и по спектральному составу вследствие ее поглощения и рассеяния атмосферными газами и взвешенными в воздухе жидкими и твердыми частицами. В результате у земной поверхности поток прямой С. Р., поступающей от солнечного диска, колеблется в зависимости от физических свойств атмосферы и длины пути, проходимого в атмосфере солнечными лучами, в широких пределах, но не превышает на уровне моря 1,5 кал/см 2 ·мин на поверхность, перпендикулярную к лучам; с высотой над уровнем моря он возрастает. Спектр С. Р. у поверхности Земли ограничен длинами волн 0,29 и 2,0 мкм, а максимум энергии смещен в интервал желто-зеленых лучей.

Часть С. Р., рассеянной в атмосфере, доходит до поверхности Земли от всего небесного свода и называется рассеянной С. Я. Ее поток меняется в зависимости от высоты Солнца, замутненности атмосферы и условий облачности и иногда достигает значений порядка 0,7—1,0 кал/см 2 ·мин. В спектре рассеянной радиации увеличено процентное содержание синих, фиолетовых, ультрафиолетовых лучей.

Совокупность прямой и рассеянной С. Р., падающей на горизонтальную поверхность, называется суммарной радиацией.

Часть прямой солнечной радиации отражается от поверхности Земли и облаков и уходит в космос; рассеянная радиация также частично уходит в космическое пространство. Остальная С. Р. в основном переходит в тепло, нагревая земную поверхность и воздух, и в небольшой доле — в химическую энергию при диссоциации молекул атмосферных газов в верхних слоях, при фотосинтезе и т. д.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *