Что называют равноускоренным движением в физике
Равноускоренное движение
Всего получено оценок: 131.
Всего получено оценок: 131.
Одним из видов движения, изучаемых кинематикой, является равноускоренное движение. Равноускоренное движение — это достаточно распространённый вид движения, даже большинство равномерных движений начинались с разгона и были некоторое время равноускоренными. Рассмотрим эту тему подробнее, получим формулу равноускоренного движения, приведём примеры такого движения.
Ускорение
Если некоторое тело начинает движение из состояния покоя, то его скорость изменяется от нуля до некоторого максимального значения. Следовательно, при таком движении можно указать быстроту изменения скорости.
Например, в рекламе автомобилей указывается время разгона до 100 км/ч. Ясно, что модель, достигающая такой скорости за 5 секунд, значительно резвее, чем модель со временем разгона 15 секунд, хотя конечная скорость в обоих случаях одинакова. В чем же здесь разница, с точки зрения кинематики?
Из данной формулы можно получить размерность ускорения. Скорость измеряется в метрах в секунду, а время — в секундах, значит, ускорение измеряется в метрах в секунду за секунду (или метров в секунду в квадрате).
В приведённом примере первый автомобиль разгоняется с ускорением 5,56 метров в секунду за секунду, а второй — с ускорением 1,85 метров в секунду за секунду.
Рис. 1. Ускорение в физике.
Равноускоренное движение
Движение, при котором ускорение тела постоянно, называется равноускоренным. При этом знак ускорения не играет роли. Движение с постоянным отрицательным ускорением также является равноускоренным, несмотря на то, что скорость уменьшается.
Наиболее частым примером равноускоренного движения является свободное падение тел в первые секунды, когда сопротивление воздуха ещё не играет большой роли. Другим примером может служить разгон автомобиля при постоянном нажатии на педаль «газа», пока не будет набрана необходимая скорость.
Формулы равноускоренного движения
Найдём формулы скорости и координаты при равноускоренном движении. Из приведённого выше определения ускорения следует, что скорость при постоянном ускорении равна:
$$\overrightarrow v= \overrightarrow
$$\overrightarrow x= <(\overrightarrow
Что мы узнали?
Ускорение — это физическая величина, характеризующая быстроту набора скорости материальной точкой. Движение с постоянным ускорением называется равноускоренным. Хорошим примером равноускоренного движения является свободное падение тел.
Равноускоренное движение.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.
Зависимость скорости от времени.
При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.
Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:
В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей и прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:
Формула для третьей компоненты скорости, если она необходима, выглядит аналогично.)
Закон движения.
Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:
Подставляем сюда выражение для скорости, даваемое формулой (3) :
Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:
Прямолинейное равноускоренное движение.
Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:
и подставим в формулу для перемещения:
После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:
Эта формула не содержит времени и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.
Свободное падение.
Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.
Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.
Задача. Найти скорость приземления дождевой капли, если высота тучи км.
Решение. Направим ось вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой
На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!
Задача. Тело брошено вертикально вверх со скоростью м/с. Найти его скорость через c.
Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу
Задача. С балкона, находящегося на высоте м, бросили вертикально вверх камень со скоростью м/с. Через какое время камень упадёт на землю?
Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу
Горизонтальный бросок.
Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.
Рис. 1. Горизонтальный бросок |
Время полёта найдём из условия, что в момент падения координата тела обращается в нуль:
Бросок под углом к горизонту.
Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.
Рис. 2. Бросок под углом к горизонту |
Начинаем с уравнений:
Дальше действуем так же, как и в случае горизонтального броска. В результате приходим к соотношениям:
(Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость от снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой:
I. Механика
Тестирование онлайн
Равноускоренное движение
Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.
Ускорение тела
Эту формулу чаще всего при решении задач применяют в видоизмененном виде:
Направление вектора ускорения
Направление вектора ускорения изображено на рисунках
На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.
При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.
На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.
При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.
Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на «-2м/с». 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.
При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком «минус».
Перемещение при равноускоренном движении
Дополнительная формула, которую называют безвременной
Формула в координатах
Связь со средней скоростью
При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости
Из этого правила следует формула, которую очень удобно использовать при решении многих задач
Соотношение путей
Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.
Главное запомнить
Упражнения
Поезд движется равноускоренно с ускорением a (a>0). Известно, что к концу четвертой секунды скорость поезда равна 6м/с. Что можно сказать о величине пути, пройденном за четвертую секунду? Будет ли этот путь больше, меньше или равен 6м?
Так как поезд движется с ускорением, то скорость его все время возрастает (a>0). Если к концу четвертой секунды скорость равна 6м/с, то в начале четвертой секунды она была меньше 6м/с. Следовательно, путь, пройденный поездом за четвертую секунду, меньше 6м.
Какие из приведенных зависимостей описывают равноускоренное движение?
Уравнение скорости движущегося тела . Каково соответствующее уравнение пути?
*Автомобиль прошел за первую секунду 1м, за вторую секунду 2м, за третью секунду 3м, за четвертую секунду 4м и т.д. Можно ли считать такое движение равноускоренным?
В равноускоренном движении пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел. Следовательно, описанное движение не равноускоренное.
Равноускоренное движение
В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно ускорению свободного падения . Для кинематического описания движения камня систему координат удобно выбрать так, чтобы одна из осей, например ось OY, была направлена параллельно вектору ускорения. Тогда криволинейное движение камня можно представить как сумму двух движений – прямолинейного равноускоренного движения вдоль оси OY и равномерного прямолинейного движения в перпендикулярном направлении, т. е. вдоль оси OX (рис. 1.4.1).
Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.
Проекции векторов скорости и ускорения на координатные оси. ax = 0, ay = –g
При равноускоренном прямолинейном движении скорость тела определяется формулой
(*)
В этой формуле υ0 – скорость тела при t = 0 (начальная скорость), a = const – ускорение. На графике скорости υ (t) эта зависимость имеет вид прямой линии (рис. 1.4.2).
Графики скорости равноускоренного движения
По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. 1.4.2 для графика I. Ускорение численно равно отношению сторон треугольника ABC:
Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна), тем больше ускорение тела.
Для графика II: υ0 = 3 м/с, a = –1/3 м/с 2
График скорости позволяет также определить проекцию перемещения s тела за некоторое время t. Выделим на оси времени некоторый малый промежуток времени Δt. Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt. Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt. Это перемещение равно площади заштрихованной полоски (рис. 1.4.2). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt, получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF. Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.
Так как υ – υ0 = at, окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:
(**)
Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y0 прибавить перемещение за время t:
(***)
Это выражение называют законом равноускоренного движения.
При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a. Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t. Результат записывается в виде
Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ0, ускорение a и перемещение s:
Если начальная скорость υ0 равна нулю, эти формулы принимают вид
Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s, a, y0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.
Равномерное и равноускоренное движение
В процессе такого перемещения скорость тела периодически изменяется, поэтому для описания данного процесса применяют понятия средней и мгновенной скоростей.
Мгновенная скорость – это скорость движения тела, которая фиксируется в конкретный момент времени в заданной точке пути. Другими словами, мгновенной скоростью \(v\) есть предел стремления средней скорости тела \(v_<ср>\) при бесконечно малом промежутке времени:
Известно, что предел отношения приращения функции к приращению аргумента, в случае стремления последнего к нулю, – это главная производная функции по аргументу.
Рассмотрим пример скатывания шарика по наклонной поверхности. При этом мы наблюдаем, что шарик движется неравномерно: расстояния, которые он проходит за одинаковые последовательные интервалы времени, постоянно увеличиваются. То есть, темп его движения постоянно растёт. Данное движение, как и скачивание любого предмета, является классикой прямолинейного равноускоренного перемещения.
Еще одним примером такого движения является перемещение транспорта, когда он разгоняется, а так же когда тормозит. То есть равноускоренным движением может считаться не только ускоренное, но и замедленное движение.
Дело в том, что понятие «ускорение» в физическом смысле более широкое, нежели мы привыкли использовать в ежедневной жизни. Слово ускорение в широком потреблении понимается как увеличение скорости, но физически под ускорением понимается передвижение тела с постоянным изменением скорости, при этом неважно увеличивается она или уменьшается.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Понятие прямолинейного равноускоренного движения достаточно широко используется при изучении законов механики.
Стоит отметить, что при влиянии постоянной силы тело будет перемещаться равноускорено.
Равномерное движение
Равномерное движение – это такое механическое перемещение тела, когда за равные промежутки времени оно преодолевает равные расстояния.
Для равномерного перемещения характерно постоянное значение скорости:
где \(v\) – скорость равномерного перемещения, м/с;
\(l\) – расстояние, преодоленное объектом, м;
\(δt\) – промежуток времени перемещения, с.
При равномерном перемещении скорость предмета остаётся равной на каждом промежутке пути.
Если перемещение тела не только равномерное, а также прямолинейное, то его путь равен модулю его перемещения. Значит, аналогично предыдущему выражению, определяем скорость равномерного прямолинейного перемещения:
где \(\overline
\(\overline\) – перемещение тела, м;
\(δt\) – промежуток времени перемещения, с.
Скорость равномерного прямолинейного перемещения является векторной величиной. То есть её направление также имеет значение, как и модуль.
Равноускоренное движение тела
При равноускоренном перемещении скорость постоянно изменяется. Если речь идет об убыстрении, скорость постоянно растет. То есть ускорение остаётся величиной постоянной, а темп постоянно растет.
Помимо равноускоренного движения еще выделяют равнозамедленное, где темп постоянно уменьшается с одинаковой быстротой.
Различают одномерное и многомерное ускорение. Первое происходит вдоль одной оси координат, а второе – в плоскости или в пространстве.
Не нашли что искали?
Просто напиши и мы поможем
Ускорение тела
Формулы равномерного движения для расчета ускорения могут применяться без учёта времени в разных плоскостях. Например, при расчёте свободного падения жестких тел, можно определять их местоположение. Это бывает полезно при различных геометрических расчётах.
Неравномерное перемещение тела, так же как и равноускоренное, характеризуется изменением скорости. Но в чём же тогда их отличие? При равноускоренном – скорость тела не просто изменяется, она равно ускоряется.
Понятие ускорения часто ассоциируют с ростом скорости. Поскольку скорость растет одинаково, говорят о равном возрастании скорости. Как же определить, скорость растет равномерно или нет? Для этого засекают время, оценивают приращение скорости за равные промежутки времени, если при этом приращение одинаково на каждом новом участке, передвижение считается равноускоренным.
Ускорение – это физическая величина, показывающая на сколько возрастает скорость.
Замедленным движением есть перемещение с уменьшающейся скоростью. Поскольку в физике любое перемещение с меняющейся скоростью называется ускоренным, то неважно разгоняется автомобиль либо тормозит, в любом случае он передвигается с ускорением.
Значит, ускорение описывает быстроту изменения скорости. Оно показывает на сколько меняется скорость за одну секунду. Чем больше величина ускорения, тем стремительнее тело набирает скорость либо сбрасывает её. Ускорение обозначается буквой a и определяется соотношением изменения скорости δv к промежутку времени δt, за которое оно осуществлено: