Что называют основанием логарифма
Логарифм (понятие).
Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени, в которую надо возвести число a, чтобы получить число b (логарифм существует только у положительных чисел).
Из данной формулировки вытекает, что вычисление x= logα b, равнозначно решению уравнения a x =b.
Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).
На данном этапе целесообразно рассмотреть образцы логарифмов log72, ln√5, lg0.0001.
А записи lg(-3), log-33.2, log-1-4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.
Условия определения логарифма.
Возьмем условие a≠1. Поскольку единица в любой степени равна единице, то равенство x=logα b может существовать лишь при b=1, но при этом log1 1 будет любым действительным числом. Для исключения этой неоднозначности и берется a≠1.
Докажем необходимость условия a>0. При a=0 по формулировке логарифма может существовать только при b=0. И соответственно тогда log00 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0. А при a 0.
И последнее условие b>0 вытекает из неравенства a>0, поскольку x=logα b, а значение степени с положительным основанием a всегда положительно.
Особенности логарифмов.
Логарифмы характеризуются отличительными особенностями, которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.
Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.
Логарифм. Основание логарифма.
Для большинства не составляет сложности возвести в степень какое-либо число.
Так 2 4 = 2·2·2·2 = 16, ,
.
1. Первое это извлечение корня, когда необходимо найти, какое число надо возвести в степень с показателем 4, чтобы получить число 16.
2. Во втором случае надо вычислить, какой показатель должен быть у степени, в которую надо возвести основание 2, чтобы получить 16.
Если неизвестный показатель обозначен буквой х, то можем составить уравнение: 2 х = 16. Действие, с помощью которого находится показатель степени по заданной степени и известному основанию, называется расчетом логарифма.
Логарифмом заданного числа по данному основанию называется показатель степени, в которую надо возвести это основание, чтобы получить данное число.
Символ logab, читается: «логарифм b по основанию a«.Из формулировки можно сделать вывод, что нахождение x= logab равнозначно решению уравнения a х = b. Так, log216 = 4 потому что 2 4 = 16.
Как видим, внизу знака log помещаем, то число, которое служит основанием степени, отсюда по аналогии получаем – основание логарифма.
Логарифм. Основное логарифмическое тождество.
Основное логарифмическое тождество и логарифм тесно взаимосвязаны. И по сути, основное логарифмическое тождество является математической записью определения логарифма. Разберем подробно, что такое логарифм, откуда он произошел.
Когда, к примеру, в уравнении a x = b число а положительно, а число b отрицательно, то у такого уравнения корней нет. Но если только а и b положительны и а ≠ 1, то оно непременно имеет исключительно один единственный корень. Достаточно известный факт, что график показательной функции у = а х непременно пересекается с прямой у = b и притом исключительно в одной точке. Абсцисса точки пересечения и будут корнем уравнения.
Для обозначения корня уравнения a x = b принято употреблять logab (произносим: логарифм числа b по основанию а).
Логарифм числа b по основанию а это показатель степени, в которую нужно возвести число а, чтобы получить число b причем a > 0, a ≠ 1, b > 0.
Исходя из определения, получаем основное логарифмическое тождество:
Следствием основного логарифмического тождества является нижеследующее правило.
Из равенства двух вещественных логарифмов получаем равенство логарифмируемых выражений.
Действительно, когда logab = logaс, то , откуда, b = c.
Рассмотрим, почему для логарифмического тождества взяты ограничения a > 0, a ≠ 1, b > 0.
Первое условие a ≠ 1.
Общеизвестно, что единица в любой степени будет единица, и равенство x = logab может существовать лишь при b = 1, но при этом log11 будет любым действительным числом. Для недопущения этой неоднозначности и принимается a ≠ 1.
Обоснуем необходимость условия a > 0.
При a = 0 по определению логарифма может существовать только при b = 0. И следовательно тогда log00 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Не допустить эту неоднозначность дает условие a ≠ 0. А при a 0.
И заключительное условие b > 0 является следствием из неравенства a > 0, так как x = logab, а значение степени с положительным основанием a всегда положительно.
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок № 24. Логарифм. Свойства логарифмов.
Перечень вопросов, рассматриваемых в теме
1. Определение логарифма.
2. Основное логарифмическое тождество.
3. Свойства логарифмов.
Логарифмом положительного числа по основанию , называется показатель степени, в которую надо возвести чтобы получить .
Логарифмирование – это действие нахождения логарифма числа.
Основное логарифмическое тождество:
Свойства логарифмов. При , справедливы равенства:
— логарифм произведения: ;
— логарифм частного: ;
— логарифм степени: .
Колягин Ю. М., Ткачева М. В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. – М.: Просвещение, 2014. – 384 с.
Открытые электронные ресурсы:
Теоретический материал для самостоятельного изучения
При решении простейших показательных уравнений не всегда можно найти точный ответ. Например, уравнение имеет корень 5, т. к. значит , В уравнении число 5 не является степенью 2, значит предыдущий способ решения не подходит. Нам известно, что уравнение имеет единственный корень. Посмотрим это на графике.
Абсцисса точки пересечения – единственное решение данного уравнения. Это число и называют логарифмом 5 по основанию 2.
Дадим определение логарифма.
Логарифмом положительного числа по основанию , называется показатель степени, в которую надо возвести чтобы получить .
Т. е. логарифм числа по основанию , есть некоторое число такое, что .
, т. к. выполнены все условия определения:
1) 216 > 0; 2) 6 > 0, 6 ≠ 1; 3) .
, т. к. выполнены все условия определения:
1) ; 2) 2 > 0, 2 ≠ 1; 3) .
Это действие называется логарифмированием.
Логарифмирование – это действие нахождения логарифма числа.
Существует краткая запись определения логарифма:
так называемое основное логарифмическое тождество. Его используют при вычислениях.
(Читают: 4 в степени логарифм 5 по основанию 4 равен 5)
(Читают: одна треть в степени логарифм 6 по основанию одна треть равен 6)
Решим несколько задач с использованием определения логарифма.
Задача 1. Вычислить .
Задача 2. Вычислить .
Решение. Для вычисления воспользуемся свойствами степеней: 1) , 2) и основным логарифмическим тождеством: .
.
Для решения более сложных задач потребуется знание свойств логарифмов. Рассмотрим их.
1. Логарифм произведения.
Логарифм произведения чисел по основанию равен сумме логарифма по основанию и логарифма по основанию .
2. Логарифм частного.
Логарифм частного чисел по основанию равен разности логарифма по основанию и логарифма по основанию .
3. Логарифм степени.
Логарифм числа по основанию равен произведению показателя и логарифма по основанию .
Важно! Свойства выполняются при ,
Примеры и разбор решения заданий тренировочного модуля
№ 1. Вычислите: .
Чтобы выполнить это задание нам понадобятся следующие определения и свойства:
Представим в виде степени с рациональным показателем: . Далее воспользуемся свойством нахождения логарифма степени: . Вспоминаем таблицу квадратов: , значит , . Ответ: .
Чтобы выполнить это задание нам понадобятся следующие определения и свойства:
.