Что называют мгновенной скоростью неравномерного движения
Неравномерное движение. Мгновенная скорость
Урок 6. Физика 10 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Неравномерное движение. Мгновенная скорость»
Ранее мы рассматривали равномерное прямолинейное движение. Строго говоря, такое движение — это идеализированный пример. На самом деле тела двигаются неравномерно. Например, автомобиль едет чуть быстрее или чуть медленнее в определённые промежутки времени.
Да и траектория его никогда не является прямой на достаточно длинных участках.
Существует также колебательное движение, примером которого может являться движение маятника. Кроме того, как вы знаете, тело, находящееся в свободном падении, двигается с ускорением. Наконец, тело, двигающееся по кривой, обладает центростремительным ускорением. Все эти примеры являются примерами неравномерного движения. Неравномерным движением называется такое движение, при котором расстояния, пройденные за одинаковые промежутки времени, не равны.
Именно, с неравномерным движением связано понятие мгновенной скорости. Чтобы понять, что такое мгновенная скорость, рассмотрим простой пример. На рисунке вы видите траекторию, по которой перемещается точка.
Отметим три случайных положения этой точки на траектории. Тогда мы можем найти три разных вектора перемещения: , и . Соответственно, эти перемещения были совершены за промежутки времени , и . Тогда мы можем посчитать средние скорости на этих участках:
Очевидно, что эти скорости будут неравны. Но по мере уменьшения промежутка времени, средние скорости всё меньше и меньше будут отличаться друг от друга. В конце концов, если мы возьмём бесконечно малый промежуток времени, выражение
будет стремиться к определённому значению. То есть, это скорость в данный момент времени или, точнее сказать, мгновенная скорость.
Заметим, что какой бы сложной ни была траектория движения, если мы возьмём бесконечно малый промежуток времени, то на нём перемещение будет казаться прямолинейным. В этом случае, мы можем подсчитать скорость по формуле для прямолинейного движения. Но в каждое последующее мгновение, скорость будет меняться. Именно поэтому, она и называется мгновенной скоростью.
Мгновенная скорость — это величина, равная отношению перемещения к промежутку времени, в течение которого это перемещение произошло.
Мгновенная скорость направлена по касательной к траектории. Например, если вы едете в машине и наехали на кочку, то вас подбрасывает вверх. Почему? Потому что в тот миг, когда машина переезжает через кочку, мгновенная скорость направлена вверх. Но в следующее же мгновение, она направлена вниз, а еще через мгновение, скорость снова направлена также, как и была направлена до кочки.
Рассмотрим конкретный пример. Вы видите график зависимости положения материальной точки от времени при равноускоренном движении.
График представляет собой параболу. Очевидно, что в каждой точке скорость разная. Если мы рассчитаем среднюю скорость в период от 2 до 5 секунд, то она будет равна 7 м/с. Рассмотрим теперь промежуток времени от 4 до 5 секунд. В этом случае, средняя скорость будет равна 9 м/с. Рассмотрим теперь участок от 4,796 секунд до 5 секунд. Этот промежуток времени довольно мал, поэтому если мы достаточно приблизим график, то траектория будет казаться почти прямой. Средняя скорость на этом участке равна 9,8 м/с.
Как видите, с уменьшением интервала времени, средняя скорость стремится к какому-то определённому значению. То есть, к значению мгновенной скорости в момент времени t = 5 с, которое в нашем случае равно 10 м/с. Если мы подсчитаем среднюю скорость на временном интервале, равным 0,01 с, то убедимся, что средняя скорость почти равна 10 м/с.
Заметим, что во всех упомянутых примерах мы рассматривали среднюю скорость перемещения. Существует также, такое понятие, как средняя путевая скорость. Именно путевая скорость чаще всего используется для описания движения.
Средняя путевая скорость определяется отношением пройденного пути к промежутку времени, за который этот путь пройден:
Мы уже говорили, что пройденный путь всегда больше либо равен модулю перемещения. Из этого можно сделать вывод, что средняя путевая скорость больше либо равна модулю средней скорости перемещения:
Вопрос 2 § 5 Физика 9 класс Перышкин Что понимают под мгновенной скоростью неравномерного движения?
Помогите с ответом на вопрос
Что понимают под мгновенной скоростью неравномерного движения?
Под мгновенной скоростью неравномерного движения понимают скорость в конкретной точке траектории в данный момент времени.
Привет. Выручайте с ответом по физике…
Поплавок со свинцовым грузилом внизу опускают
сначала в воду, потом в масло. В обоих ( Подробнее. )
Привет всем! Нужен ваш совет, как отвечать…
Изобразите силы, действующие на тело, когда оно плавает на поверхности жидкости. ( Подробнее. )
Среди предложений 21-29:
(21) И Митрофанов услышал в этом смехе и прощение себе, и даже какое-то ( Подробнее. )
Содержание:
Прямолинейное неравномерное движение, ускорение:
На практике прямолинейное равномерное движение наблюдается очень редко. Скорость движущегося автомобиля, поезда, самолета, частей механизма и т.д. может изменяться и по величине, и по направлению.
Прямолинейное движение, при котором за равные промежутки времени материальная точка совершает разные перемещения, называют прямолинейным неравномерным движением.
При таком движении числовое значение скорости не остается неизменным, поэтому для описания неравномерного движения пользуются понятиями средней и мгновенной скорости.
Средняя скорость
Средняя скорость неравномерно движущейся материальной точки на данном участке траектории равна отношению ее перемещения на этом участке ко времени совершения этого перемещения:
Средняя путевая скорость материальной точки при неравномерном движении равна отношению всего пройденного пути ко времени, затраченному на прохождение этого пути:
Средняя скорость материальной точки, движущейся со скоростями на участках пути промежутки времени соответственно, вычисляется так:
Если то из уравнения (1.10) получается
Мгновенная скорость.
Скорость материальной точки в данный момент времени или в данной точке траектории называют мгновенной скоростью.
Мгновенная скорость в некоторой точке является векторной величиной и определяется как предел отношения достаточно малого перемещения на участке траектории, включающей эту точку, к малому промежутку времени затраченному на это перемещение (при условии
Где — мгновенная скорость поступательного движения материальной точки.
С течением времени мгновенная скорость может увеличиваться, уменьшаться и изменять направление. Направление мгновенной скорости в данной точке траектории совпадает с направлением касательной к траектории в этой точке (b). Проекция вектора мгновенной скорости в прямоугольной системе координат равна первой производной координаты по времени:
Ускорение
Быстрота изменения мгновенной скорости при неравномерном движении по величине и направлению характеризуется векторной физической величиной, называемой ускорением:
Если измерение времени начинается с нуля то:
Направление ускорения совпадает с направлением вектора
Для простоты здесь и в последующем будет рассматриваться такое неравномерное прямолинейное движение материальной точки, при котором за любые равные промежутки времени происходит одинаковое изменение скорости. Такое движение называется равнопеременным движением.
Равнопеременное движение
При равнопеременном движении проекция ускорения на любую ось, например ось также постоянная:
В СИ за единицу ускорения принят — ускорение такого равнопеременного движения, при котором материальная точка за 1 секунду изменяет свою скорость на
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Неравномерное движение. Мгновенная скорость
Урок 6. Физика 10 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Неравномерное движение. Мгновенная скорость»
Ранее мы рассматривали равномерное прямолинейное движение. Строго говоря, такое движение — это идеализированный пример. На самом деле тела двигаются неравномерно. Например, автомобиль едет чуть быстрее или чуть медленнее в определённые промежутки времени.
Да и траектория его никогда не является прямой на достаточно длинных участках.
Существует также колебательное движение, примером которого может являться движение маятника. Кроме того, как вы знаете, тело, находящееся в свободном падении, двигается с ускорением. Наконец, тело, двигающееся по кривой, обладает центростремительным ускорением. Все эти примеры являются примерами неравномерного движения. Неравномерным движением называется такое движение, при котором расстояния, пройденные за одинаковые промежутки времени, не равны.
Именно, с неравномерным движением связано понятие мгновенной скорости. Чтобы понять, что такое мгновенная скорость, рассмотрим простой пример. На рисунке вы видите траекторию, по которой перемещается точка.
Отметим три случайных положения этой точки на траектории. Тогда мы можем найти три разных вектора перемещения: , и . Соответственно, эти перемещения были совершены за промежутки времени , и . Тогда мы можем посчитать средние скорости на этих участках:
Очевидно, что эти скорости будут неравны. Но по мере уменьшения промежутка времени, средние скорости всё меньше и меньше будут отличаться друг от друга. В конце концов, если мы возьмём бесконечно малый промежуток времени, выражение
будет стремиться к определённому значению. То есть, это скорость в данный момент времени или, точнее сказать, мгновенная скорость.
Заметим, что какой бы сложной ни была траектория движения, если мы возьмём бесконечно малый промежуток времени, то на нём перемещение будет казаться прямолинейным. В этом случае, мы можем подсчитать скорость по формуле для прямолинейного движения. Но в каждое последующее мгновение, скорость будет меняться. Именно поэтому, она и называется мгновенной скоростью.
Мгновенная скорость — это величина, равная отношению перемещения к промежутку времени, в течение которого это перемещение произошло.
Мгновенная скорость направлена по касательной к траектории. Например, если вы едете в машине и наехали на кочку, то вас подбрасывает вверх. Почему? Потому что в тот миг, когда машина переезжает через кочку, мгновенная скорость направлена вверх. Но в следующее же мгновение, она направлена вниз, а еще через мгновение, скорость снова направлена также, как и была направлена до кочки.
Рассмотрим конкретный пример. Вы видите график зависимости положения материальной точки от времени при равноускоренном движении.
График представляет собой параболу. Очевидно, что в каждой точке скорость разная. Если мы рассчитаем среднюю скорость в период от 2 до 5 секунд, то она будет равна 7 м/с. Рассмотрим теперь промежуток времени от 4 до 5 секунд. В этом случае, средняя скорость будет равна 9 м/с. Рассмотрим теперь участок от 4,796 секунд до 5 секунд. Этот промежуток времени довольно мал, поэтому если мы достаточно приблизим график, то траектория будет казаться почти прямой. Средняя скорость на этом участке равна 9,8 м/с.
Как видите, с уменьшением интервала времени, средняя скорость стремится к какому-то определённому значению. То есть, к значению мгновенной скорости в момент времени t = 5 с, которое в нашем случае равно 10 м/с. Если мы подсчитаем среднюю скорость на временном интервале, равным 0,01 с, то убедимся, что средняя скорость почти равна 10 м/с.
Заметим, что во всех упомянутых примерах мы рассматривали среднюю скорость перемещения. Существует также, такое понятие, как средняя путевая скорость. Именно путевая скорость чаще всего используется для описания движения.
Средняя путевая скорость определяется отношением пройденного пути к промежутку времени, за который этот путь пройден:
Мы уже говорили, что пройденный путь всегда больше либо равен модулю перемещения. Из этого можно сделать вывод, что средняя путевая скорость больше либо равна модулю средней скорости перемещения:
Мгновенная и средняя скорость
Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.
Величина, которая характеризует быстроту изменения положения координаты, называется скоростью.
Мгновенная скорость точки. Формулы
Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.
Мгновенной скоростью называют предел, к которому стремится средняя скорость » open=» υ при стремлении промежутка времени ∆ t к 0 :
Имеющееся выражение υ = l i m ∆ t ∆ r ∆ t = d r d t = r ˙ в декартовых координатах идентично ниже предложенным уравнениям:
Перемещение и мгновенная скорость
Запись модуля вектора υ примет вид:
Мгновенной скоростью называют значение производной от функции перемещения по времени в заданный момент, связанной с элементарным перемещением соотношением d r = υ ( t ) d t
Решение
Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:
Решение
Вычислим уравнение мгновенной скорости, подставим числовые выражения: