Что называют магнитным взаимодействием

Магнитное взаимодействие

Взаимодействие движущихся зарядов. Действие движущихся зарядов (электрических токов) друг на друга отличается от кулоновского взаимодействия неподвижных зарядов.
Взаимодействие движущихся зарядов называется магнитным.

Примеры проявления магнитного взаимодействия:

* притяжение или отталкивание двух параллельных проводников с током;
* магнетизм некоторых веществ, например, магнитный железняк, из которых изготавливаются постоянные магниты; поворот легкой стрелки, сделанной из магнитного материала, вблизи проводника с током
* вращение рамки с током в магнитном поле.
*Что называют магнитным взаимодействием

* порождается движущимися зарядами (электрическим током) или переменным электрическим полем;
* обнаруживается по действию на электрический ток или магнитную стрелку.

Вектор магнитной индукции. Опыты показывают, что магнитное поле производит на контур с током и магнитную стрелку ориентирующее действие, вынуждая их устанавливаться в определенном направлении. Поэтому для характеристики магнитного поля должна быть использована величина, направление которой связано с ориентацией контура с током или магнитной стрелки в магнитном поле. Эта величина называется вектором магнитной индукции В.
За направление вектора магнитной индукции принимается:

* направление положительной нормали к плоскости контура с током,
* направление северного полюса магнитной стрелки, помещенной в магнитное поле.

Модуль вектора В равен отношению максимального вращающего момента, действующего на рамку с током в данной точке поля, к произведению силы тока I и площади контура S.
В = Мmах/(I·S). (1)

Вращающий момент М зависит от свойств поля и определяется произведением I·S.
Что называют магнитным взаимодействием

Примеры магнитных полей:
1. Прямолинейный проводник с током
Линии магнитной индукции представляют собой концентрические окружности с центром на проводнике.
Что называют магнитным взаимодействием
2. Круговой ток
Направление вектора магнитной индукции связано с направлением ток в контуре правилом правого винта.
Что называют магнитным взаимодействием

3. Соленоид с током
Внутри длинного соленоида с током магнитное поле является однородным и линии магнитной индукции параллельны между собой. Направление В и направление тока в витках соленоида связаны правилом правого винта
Что называют магнитным взаимодействием
Принцип суперпозиции полей. Если в какой-либо области пространства происходит наложение нескольких магнитных полей, то вектор магнитной индукции результирующего поля, равен векторной сумме индукций отдельных полей:
B = SBi
Что называют магнитным взаимодействием

Источник

Магнитное поле

Что называют магнитным взаимодействием

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции ​ \( \vec \) ​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​ \( I \) ​ и его длине ​ \( l \) ​:

Что называют магнитным взаимодействием

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции:

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Что называют магнитным взаимодействием

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​ \( M \) ​:

Что называют магнитным взаимодействием

где ​ \( I \) ​ – сила тока в проводнике, ​ \( S \) ​ – площадь поверхности, охватываемая контуром, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( \alpha \) ​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

Что называют магнитным взаимодействием

где максимальный момент сил соответствует углу ​ \( \alpha \) ​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​ \( N \) ​ и южный ​ \( S \) ​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

Что называют магнитным взаимодействием

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Что называют магнитным взаимодействием

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Что называют магнитным взаимодействием

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​ \( I \) ​ длиной ​ \( l \) ​, помещенный в магнитное поле с индукцией ​ \( \vec \) ​, действует сила, модуль которой равен:

Что называют магнитным взаимодействием

где ​ \( \alpha \) ​ – угол между проводником с током и вектором магнитной индукции ​ \( \vec \) ​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ \( B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Что называют магнитным взаимодействием

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

Что называют магнитным взаимодействием

где ​ \( N \) ​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

Что называют магнитным взаимодействием

где ​ \( q \) ​ – заряд частицы, ​ \( v \) ​ – скорость частицы, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( \alpha \) ​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ \( B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Что называют магнитным взаимодействием

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

Что называют магнитным взаимодействием

где ​ \( m \) ​ – масса частицы, ​ \( v \) ​ – скорость частицы, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( q \) ​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Что называют магнитным взаимодействием

Угловая скорость движения заряженной частицы:

Что называют магнитным взаимодействием

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.

Что называют магнитным взаимодействием

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Что называют магнитным взаимодействием

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

Источник

Магнитное поле: что это такое, определение, виды, силовые линии

Магнитное поле — это поле, которое можно определить как пространство вокруг магнита, в котором действуют магнитные силы.

Как известно, электрический ток может оказывать различные действия, например, тепловые, химические и магнитные. Магнитное действие проявляется, например, в том, что между проводниками с электрическим током возникают силы взаимодействия, которые называются магнитными силами.

Магнитное взаимодействие

Еще в древности было замечено, что одни тела притягивают другие тела. Янтарь следует натирать, чтобы он притягивал к себе волосы или обрывки ткани, но магниты всегда притягивают, но только железные предметы. Древние люди также обнаружили, что магнит может заставить другое тело, сделанное из железа, приобрести магнитные свойства, если держать его достаточно близко к магниту. Они также заметили, что две стороны магнита имеют разные свойства — обращенные друг к другу магниты могут притягивать или отталкивать друг друга.

Уже в настоящее время мы знаем, что магнитное поле возникает между полюсами магнитного материала. Полюса бывают северными и южными. Вы, наверное, сами сталкивались с тем, что когда вы сводите два магнита вместе, они либо притягиваются, либо отталкиваются друг от друга. Это происходит потому, что магнитные полюса с разными названиями (север-юг) притягиваются, а полюса с одинаковыми названиями (север-север, юг-юг) отталкиваются.

Магнитное поле тела часто представляют в виде диаграммы линий поля. Если внести ферромагнитное тело в магнитное поле, оно выровняется вдоль линий поля. Ферромагниты — самые известные магниты, создающие постоянное магнитное поле.

Если мы поднесем некоторое количество железных скрепок к магниту, то заметим, что большинство скрепок скопятся на концах магнита (называемых полюсами), потому что магнитная сила там наибольшая. Однако в середине магнита она имеет наименьшее значение. Магнитные силы действуют в пространстве вокруг магнита и создают то самое магнитное поле.

Магнитное поле невидимо, но, используя железные опилки, вы можете наблюдать его эффекты (см. рисунок 1).

Что называют магнитным взаимодействиемРис. 1. Железные опилки расположены характерным образом — они образуют линии вокруг магнита.
Эти линии показывают форму магнитного поля, которое возникло вокруг стержневого магнита.

Большая часть железных опилок скапливается возле полюсов, а остальные располагаются вдоль линий поля. Они представляют собой линии магнитного поля, которые окружают магнит. Железные опилки намагничиваются, т.е. приобретают магнитные свойства и становятся маленькими магнитами, которые притягивают друг друга.

Изображение линий магнитного поля для некоторых видов магнитов

Начнем с изображения силовых линий магнитного поля. Они используются для визуализации магнитного поля. Вне магнита линии поля всегда идут от северного полюса к южному. Поскольку магнитное поле является замкнутым полем, они должны двигаться с юга на север внутри магнита. Плотность линий поля дает информацию о силе магнитного поля; чем плотнее линии поля, тем больше напряженность магнитного поля.

Магнитное поле стержневого магнита

На рисунке 2 ниже показано магнитное поле стержневого магнита. Стержневой магнит является постоянным, и имеет северный и южный полюсы.

Что называют магнитным взаимодействиемРис. 2. Магнитное поле стержневого магнита

Если сравнить магнитное поле с электрическим, то вместо плюсового и минусового полюса есть северный и южный. На этом рисунке показан ход линий поля от северного до южного полюса. Здесь также видно, что плотность линий поля не является постоянной для стержневого магнита. На полюсах она выше, чем между полюсами. Это говорит о том, что магнитное поле сильнее непосредственно у полюсов, чем между полюсами.

Магнитное поле подковообразного магнита

Кроме стержневого магнита, существуют и другие формы постоянных магнитов. Одной из важных форм является подковообразный магнит, который может быть круглым или квадратным.

Что называют магнитным взаимодействиемРис. 3. Магнитное поле подковообразного магнита

Как видите, магнитное поле внутри подковы однородно (см. рисунок 3). Однородность означает, что магнитное поле постоянно и не зависит от местоположения. Однородное магнитное поле на диаграмме линий поля можно распознать по параллельным линиям поля, расположенным на одинаковом расстоянии. Поэтому напряженность магнитного поля в однородном магнитном поле одинакова в каждой точке.

Магнитное поле двух стержневых магнитов

Давайте посмотрим на другой пример магнитного поля (см. рисунок 4 ниже):

Что называют магнитным взаимодействиемРис. 4. Магнитное поле двух стержневых магнитов

Эти линии поля показывают, что два магнита с одинаковой полярностью отталкиваются друг от друга. Из этого можно сделать вывод, что одинаковые полюса отталкиваются, а разные полюса притягиваются.

Магнитное поле планеты Земля

Но какое отношение имеют полюса магнита к северу и югу Земли? Вы можете приблизиться к ответу, если спросите себя, как работает компас.

Что называют магнитным взаимодействиемРис. 5. Компас выравнивается по магнитному полю

Земля также имеет магнитное поле (см. рисунок 5), начало которого лежит на полюсах, т.е. на северном и южном полюсах. Стрелка компаса представляет собой постоянный стержневой магнит и выравнивается по этому полю. При этом северная часть стрелки компаса притягивается к южному полюсу магнитного поля Земли. Поэтому географический юг лежит на магнитном севере.

Магнитное поле проводника с электрическим током

Когда вы рассыпаете мелкие металлические опилки вокруг магнита и проводника, по которому течет электрический ток, они образуют определенные геометрические фигуры. Вы уже знаете, что это явление вызвано магнитным полем, создаваемым магнитом. Будет ли то же самое с проводником?

Наличие магнитного поля можно проверить с помощью магнитной стрелки, которая, как известно, является частью компаса. Как мы знаем, магнитная стрелка имеет два полюса: северный и южный. Линию, которая соединяет полюсы магнитной стрелки называют осью. я осью. Кроме того, мы знаем, что северный полюс магнитной стрелки указывает на южный магнитный полюс, а южный полюс стрелки указывает на северный магнитный полюс.

Рядом с магнитом он выравнивается по силовым линиям магнитного поля и указывает на южный полюс. С помощью магнитной стрелки определяются положения магнитных полюсов Земли и географические направления. Возникает ли магнитное поле только вокруг магнитов и Земли? Чтобы выяснить это, нужно провести эксперимент, которые отражает взаимодействие проводника с электрическим током и магнитной стрелки.

Опыт Эрстеда.

Для того, чтобы провести опыт, расположим проводник, который включён в электрическую цепь источника тока, над магнитной стрелкой параллельно её оси (см. рисунок 6).

Что называют магнитным взаимодействиемРис. 6. Взаимодействие проводника с электрическим током и магнитной стрелки

Отклонение магнитной стрелки возле проводника, по которому протекает электрический ток, указывает на наличие магнитного поля. Направление отклонения магнитной стрелки зависит от того, в каком направлении течет электрический ток. Эта связь была открыта Хансом Кристианом Эрстедом в 1820 году. Его опыт имел большое значение для развития учения об электромагнитных явлениях.

Таким образом можно вывести 3 следующих вывода:

Поэтому вокруг неподвижных электрических зарядов существует только электрическое поле, а вокруг движущихся зарядов, т.е. электрического тока, существуют и электрическое, и магнитное поля. Магнитное поле возникает вокруг проводника, когда в нем возникает электрический ток, поэтому электрический ток следует рассматривать как источник магнитного поля. Выражения «магнитное поле электрического тока» или «магнитное поле, создаваемое электрическим током» следует понимать в этом смысле.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]

Изменит ли изменение формы проводника форму магнитного поля?

Силовые линии магнитного поля вокруг проводника, скрученного в петлю, уплотняются внутри него. Если проволоку намотать много раз, мы получим катушку, и железные опилки будут располагаться так же, как и вокруг магнита (см. рисунок 7).

Что называют магнитным взаимодействиемРисунок 7. Железные опилки отражают линии магнитного поля

Электромагниты и их применение

Существование магнитного поля вокруг проводника с электрическим током широко используется в технике и промышленности. Часто используются устройства, называемые электромагнитами. Электромагнит состоит из катушки, сердечника и источника напряжения (см. рисунок 8).

Что называют магнитным взаимодействиемРис. 8. Структура электромагнита

Ферромагнитный сердечник электромагнита играет важную роль. Внутри него создаются магнитные поля, которые усиливают магнитное поле катушки.

Мелкие изделия из ферромагнитных материалов сильнее всего притягиваются полюсами электромагнита. Таким образом, можно сделать вывод, что магнитное поле вокруг электромагнита похоже на магнитное поле стержневого магнита.

Применение электромагнитов.

Электромагниты имеют различные применения. Например, на складах металлолома электромагнитные краны перемещают разбитые автомобили.

Также электромагниты используются в электрических замках. Когда электрический ток проходит через электромагнит, создается магнитное поле, которое сильно воздействует на металлическую (стальную) часть замка (ригеля). Это приводит к перемещению заслонки и открыванию двери. Когда дверь закрыта, соответствующим образом расположенная пружина перемещает ригель и блокирует замок. Замок можно открыть после повторного подключения электропитания.

Самые сильные электромагниты используются, в том числе, в ускорителях для управления движением частиц с высокой энергией. До недавнего времени магнитное поле, создаваемое токоведущими проводниками, управляло движением электронов в телевизионных кинескопах и компьютерных мониторах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *