Что называют линиями вектора магнитной индукции
Линии магнитной индукции
Ссылки
Смотреть что такое «Линии магнитной индукции» в других словарях:
ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ — линии, мысленно проведённые в магнитном поле так, что в любой точке поля вектор магнитной индукции направлен по касательной к Л. м. и., проходящей через эту точку. Л. м. и. поля пост. электрич. тока охватывают проводники с током и либо замкнуты,… … Большой энциклопедический политехнический словарь
трубка магнитной индукции — Область магнитного поля, ограниченная непрерывной поверхностью, образующими которой являются линии магнитной индукции … Политехнический терминологический толковый словарь
силовые линии — электрического и магнитного полей, линии, касательные к которым в каждой точке поля совпадают с направлением напряжённости электрического или соответственно магнитного поля; качественно характеризуют распределение электромагнитного поля в… … Энциклопедический словарь
Силовые линии векторного поля — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия
Силовые линии — линии, проведённые в каком либо силовом поле (электрическом, магнитном, гравитационном), касательные к которым в каждой точке пространства совпадают по направлению с вектором, характеризующим данное поле (напряжённостью электрического или … Большая советская энциклопедия
СИЛОВЫЕ ЛИНИИ — линии, мысленно проведённые в к. л. силовом поле (электрич.. магнитном, тяготения) так, что в каждой точке поля направление касательной к линии совпадает с направлением напряжённости поля (магнитной индукции в случае магнитного поля). Через… … Большой энциклопедический политехнический словарь
путь прохождения магнитной силовой линии — линия магнитной индукции — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы линия магнитной индукции EN… … Справочник технического переводчика
Средняя длина магнитной силовой линии образца — длина однородно намагниченного образца из того же магнитного материала, что и испытуемый образец, намагничиваемого одинаковой с последним напряженностью магнитного поля при одних и тех же значениях магнитной индукции, магнитодвижущей силы и… … Словарь-справочник терминов нормативно-технической документации
Магнетизм — 1) Свойства магнитов. Наиболее характерное магнитное явление притяжение магнитом кусков железа известно со времен глубокой древности. Однако в Европе вплоть до XII столетия наблюдали это явление лишь с естественными магнитами, т. е. с кусками… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом (См. Магнитный момент), независимо от состояния их движения. М. п. характеризуется вектором магнитной индукции В, который определяет:… … Большая советская энциклопедия
Индукция магнитного поля. Линии магнитной индукции.
Для наглядного представления магнитного поля М. Фарадеем было введено понятие магнитных силовых линий, которые он часто демонстрировал в своих опытах. Картину силовых линий запросто можно получить при помощи железных стружек, насыпанных на картон.
На первом рисунке представлены линии магнитной индукции прямого тока, на втором рисунке — соленоида, на третьем рисунке — кругового тока, на четвертом рисунке — прямого магнита.
Линиями магнитной индукции, либо магнитными силовыми линиями, либо просто магнитными линиями называют линии, касательные к которым в любой точке совпадают с направлением вектора магнитной индукции в этой точке поля.
Направление магнитного поля прямого тока можно определить по правилу правого буравчика.
Если вращать рукоятку буравчика таким образом, чтобы поступательное движение острия буравчика указывало направление тока, то направление вращения рукоятки буравчика укажет направление силовых линий магнитного поля тока.
Направление магнитного поля прямого тока можно определять также при помощи первого правила правой руки.
Если охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то кончики остальных пальцев в каждой точке покажут направление вектора индукции в этой точке.
Что называют линиями вектора магнитной индукции
Наглядную картину магнитного поля можно получить, если построить линии магнитной индукции.
Определение.
Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор в данной точке поля.
Картину линий магнитного поля можно сделать видимой, если воспользоваться мелкими железными опилками. В магнитном поле каждый кусочек железа, насыпанный на лист картона, намагничивается и ведёт себя как маленькая магнитная стрелка. Большое количество таких стрелок позволяет в большем числе точек определить направление магнитного поля и, следовательно, более точно указать расположение линий магнитной индукции.
Важной особенностью линий магнитного поля является то, что они не имеют ни начала, ни конца. Они всегда замкнуты. Вспомним, что с электростатическим полем дело обстоит иначе. Его силовые линии во всех случаях имеют источник: они начинаются на положительных зарядах и оканчиваются на отрицательных.
Определение.
Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобных электрическим, в природе нет.
Что называют линиями вектора магнитной индукции
Направление вектора магнитной индукции
За направление вектора магнитной индукци принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.
Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности, плоскость которой перпендикулярна проводу, а центр ее лежит на оси провода.
Правило буравчика
Направление вектора магнитной индукции устанавливают с помощью правила буравчика.
Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.
Линии магнитной индукции
Магнитное поле можно показать с помощью линий магнитной индукции.
Линиями магнитной индукции называют линии, касательные к которым в любой их точке совпадают с вектором в данной точке поля. Линии вектора магнитной индукции аналогичны линиям вектора напряженности электростатического поля.
Линии магнитной индукции можно сделать видимыми, воспользовавшись железными опилками.
Магнитное поле прямолинейного проводника с током
Для пряого проводника с током линии магнитной индукции являются концентрическими окружностями, лежащими в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии.
Магнитное поле катушки с током (соленоида)
Если длина соленоида много больше его диаметра, то магнитное поле внутри соленоида можно считать однородным.
Линии магнитной индукции такого поля параллельны и находятся на равных расстояниях друг от друга.
Магнитное поле Земли
Линии магнитной индукции поля Земли подобны линиям магнитной индукции поля соленоида.
Магнитная ось Земли составляет с осью вращения Земли угол 11,5°.
Периодически магнитные полюсы меняют свою полярность.
Вихревое поле
Силовые линии электростатического поля всегда имеют источники: они начинаются на положительных зарядах и оканчиваются на отрицательных.
А линии магнитной индукции не имеют ни начала, ни конца, они всегда замкнуты.
Поля с замкнутыми векторными линиями называют вихревыми.
Магнитное поле — вихревое поле.
Магнитное поле не имеет источников.
Магнитных зарядов, подобных электрическим, в природе не существует.
Итак, магнитное поле — это вихревое поле, в каждой его точке вектор магнитной индукции указывает магнитная стрелка, направление вектора магнитной индукции можно определить по правилу буравчика.
Магнитное поле и его характеристики
теория по физике 🧲 магнетизм
Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.
Основные свойства магнитного поля
Вектор магнитной индукции
За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.
Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.
Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.
Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.
Напряженность магнитного поля
μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.
Направление вектора магнитной индукции и способы его определения
Чтобы определить направление вектора магнитной индукции, нужно:
В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:
При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:
При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.
Отсюда следует, что:
Способы обозначения направлений векторов:
Вверх | |
Вниз | |
Влево | |
Вправо | |
На нас перпендикулярно плоскости чертежа | |
От нас перпендикулярно плоскости чертежа |
Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?
Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.
Магнитное поле прямолинейного тока
Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.
Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:
Правило буравчика (правой руки)
Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.
Модуль вектора магнитной индукции на расстоянии r от оси проводника:
Магнитное поле кругового тока
Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.
Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:
Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.
Модуль вектора магнитной индукции в центре витка, радиус которого равен R:
Модуль напряженности в центре витка:
Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?
Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.
Магнитное поле электромагнита (соленоида)
Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.
Число витков в соленоиде N определяется формулой:
l — длина соленоида, d — диаметр проволоки.
Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.
Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.
Модуль вектора магнитной индукции в центральной области соленоида:
Модуль напряженности магнитного поля в центральной части соленоида:
Алгоритм определения полярности электромагнита
Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.
Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.
На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен
а) вертикально вверх в плоскости витка
б) вертикально вниз в плоскости витка
в) вправо перпендикулярно плоскости витка
г) влево перпендикулярно плоскости витка
Алгоритм решения
Решение
По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.
Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.
Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?
а) повернётся на 180°
б) повернётся на 90° по часовой стрелке
в) повернётся на 90° против часовой стрелки
г) останется в прежнем положении
Алгоритм решения
Решение
Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.
Алгоритм решения
Решение
Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.
Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.
Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).
pазбирался: Алиса Никитина | обсудить разбор | оценить