Что называют координатными векторами

Координаты вектора в декартовой системе координат (ДСК)

Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.

Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.

С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.

Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач

Координатные векторы

Векторы i → и j → называются координатными векторами для заданной системы координат.

Разложение вектора

Коэффициенты a x и a y называются координатами вектора в данной системе координат на плоскости.

Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.

Равные и противоположные векторы

Векторы a → и b → равны тогда, когда их соответствующие координаты равны.

Противоположным вектором называется вектор противоположный данному.

Координаты радиус-вектора точки

Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.

Вектор O M → называется радиус-вектором точки M .

Определим, какие координаты в данной системе координат имеет радиус-вектор точки

Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.

Что называют координатными векторами

Источник

Векторы для чайников. Действия с векторами.
Координаты вектора. Простейшие задачи с векторами

Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии. Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод, понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии, авторы – Л.С. Атанасян и Компания. Сия вешалка школьной раздевалки уже выдержала 20 (!) переизданий, что, конечно, не является пределом.

2) Геометрия в 2 томах. Авторы Л.С. Атанасян, Базылев В.Т. Это литература для высшей школы, вам потребуется первый том. Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

Из инструментальных средств предлагаю собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов, а также Линейная (не) зависимость векторов. Базис векторов и Векторное и смешанное произведение векторов. Не лишней будет и локальная задача – Деление отрезка в данном отношении. На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений, что позволит научиться решать задачи по геометрии. Также полезны следующие статьи: Уравнение плоскости в пространстве, Уравнения прямой в пространстве, Основные задачи на прямую и плоскость, другие разделы аналитической геометрии. Естественно, попутно будут рассматриваться типовые задания.

Более того, по материалам сайта создана книга!

. да, это свершилось! – освойте азы теории и научитесь решать в кратчайшие сроки! Спасибо за поддержку проекта.

Понятие вектора. Свободный вектор

Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:
Что называют координатными векторами
В данном случае началом отрезка является точка Что называют координатными векторами, концом отрезка – точка Что называют координатными векторами. Сам вектор обозначен через Что называют координатными векторами. Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор Что называют координатными векторами, и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором Что называют координатными векторами. У такого вектора конец и начало совпадают.

. Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении Что называют координатными векторамии сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: Что называют координатными векторами, но допустима и запись Что называют координатными векторами, которую я буду использовать в дальнейшем. Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: Что называют координатными векторами, подразумевая тем самым, что это вектор.

То была стилистика, а сейчас о способах записи векторов:

1) Векторы можно записать двумя большими латинскими буквами:
Что называют координатными векторамии так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

2) Векторы также записывают маленькими латинскими буквами:
Что называют координатными векторамиВ частности, наш вектор Что называют координатными векторамиможно для краткости переобозначить маленькой латинской буквой Что называют координатными векторами.

Длиной или модулем ненулевого вектора Что называют координатными вектораминазывается длина отрезка Что называют координатными векторами. Длина нулевого вектора Что называют координатными векторамиравна нулю. Логично.

Длина вектора обозначается знаком модуля: Что называют координатными векторами, Что называют координатными векторами

Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.

Если совсем просто – вектор можно отложить от любой точки:
Что называют координатными векторами

Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор. Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной «школьный» вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте направленный отрезок произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё почти корректно – направленный отрезок можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.

Действия с векторами. Коллинеарность векторов

В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

Правило сложения векторов по правилу треугольников

Рассмотрим два произвольных ненулевых вектора Что называют координатными векторамии Что называют координатными векторами:
Что называют координатными векторами

Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор Что называют координатными векторамиот конца вектора Что называют координатными векторами:
Что называют координатными векторами

Суммой векторов Что называют координатными векторамии Что называют координатными векторамиявляется вектор Что называют координатными векторами. Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору Что называют координатными векторами, а затем по вектору Что называют координатными векторами. Тогда сумма векторов Что называют координатными векторамипредставляет собой вектор результирующего пути Что называют координатными векторамис началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

Кстати, если вектор Что называют координатными векторамиотложить от начала вектора Что называют координатными векторами, то получится эквивалентное правило параллелограмма сложения векторов.

Умножение вектора на число

Сначала о коллинеарности векторов. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными. Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены.

Обозначения: коллинеарность векторов записывают привычным значком параллельности: Что называют координатными векторами, при этом возможна детализация: Что называют координатными векторами(векторы сонаправлены) или Что называют координатными векторами(векторы направлены противоположно).

Произведением ненулевого вектора Что называют координатными векторамина число Что называют координатными векторамиявляется такой вектор Что называют координатными векторами, длина которого равна Что называют координатными векторами, причём векторы Что называют координатными векторамии Что называют координатными векторамисонаправлены при Что называют координатными векторамии противоположно направлены при Что называют координатными векторами.

Правило умножения вектора на число легче понять с помощью рисунка:
Что называют координатными векторами

Разбираемся более детально:

1) Направление. Если множитель Что называют координатными векторамиотрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах Что называют координатными векторамиили Что называют координатными векторами, то длина вектора уменьшается. Так, длина вектора Что называют координатными векторамив два раза меньше длины вектора Что называют координатными векторами. Если множитель Что называют координатными векторамипо модулю больше единицы, то длина вектора увеличивается в Что называют координатными векторамираз.

3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, Что называют координатными векторами. Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.

4) Векторы Что называют координатными векторамисонаправлены. Векторы Что называют координатными векторамии Что называют координатными векторамитакже сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Какие векторы являются равными?

Два вектора равны, если они сонаправлены и имеют одинаковую длину. Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

Координаты вектора на плоскости и в пространстве

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы Что называют координатными векторамии Что называют координатными векторами:

Что называют координатными векторами

Векторы Что называют координатными векторамии Что называют координатными векторамиортогональны. Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность.

Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: Что называют координатными векторами.

Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов. Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: Что называют координатными векторами. Координатные векторы нельзя переставлять местами.

Любой вектор Что называют координатными векторамиплоскости единственным образом выражается в виде:
Что называют координатными векторами, где Что называют координатными векторамичисла, которые называются координатами вектора в данном базисе. А само выражение Что называют координатными вектораминазывается разложением вектора Что называют координатными векторами по базису Что называют координатными векторами.

Что называют координатными векторами

! ВСЕМ настоятельно рекомендую прочитать ВСЁ!

Начнем с первой буквы алфавита: Что называют координатными векторами. По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: Что называют координатными векторамии Что называют координатными векторами;
2) сложение векторов по правилу треугольника: Что называют координатными векторами.

А теперь мысленно отложите вектор Что называют координатными векторамиот любой другой точки плоскости. Совершенно очевидно, что его разложение Что называют координатными векторамибудет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы Что называют координатными векторамине обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

Векторы Что называют координатными векторами, Что называют координатными векторамииллюстрируют в точности правило умножения вектора на число, вектор Что называют координатными векторамисонаправлен с базисным вектором Что называют координатными векторами, вектор Что называют координатными вектораминаправлен противоположно по отношению к базисному вектору Что называют координатными векторами. У данных векторов одна из координат равна нулю, дотошно можно записать так:
Что называют координатными векторами
Что называют координатными векторами
А базисные векторы, к слову, так: Что называют координатными векторами(по сути, они выражаются сами через себя).

И, наконец: Что называют координатными векторами, Что называют координатными векторами. Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: Что называют координатными векторами, Что называют координатными векторами. Проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

Рассмотренное разложение вида Что называют координатными векторамииногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

Что называют координатными векторамиИли со знаком равенства: Что называют координатными векторами

Сами базисные векторы записываются так: Что называют координатными векторамии Что называют координатными векторами

То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя. Строго на первом месте записываем координату, которая соответствует единичному вектору Что называют координатными векторами, строго на втором месте записываем координату, которая соответствует единичному вектору Что называют координатными векторами. Действительно, Что называют координатными векторамии Что называют координатными векторами– это ведь два разных вектора.

С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:
Что называют координатными векторами

Перед вами ортонормированный базис Что называют координатными векторамитрехмерного пространства и прямоугольная система координат, единичные векторы Что называют координатными векторамиданного базиса попарно ортогональны: Что называют координатными векторамии Что называют координатными векторами. Ось Что называют координатными вектораминаклонена под углом 45 градусов только для того, чтобы складывалось визуальное впечатление пространства. О том, как правильно выполнять плоские и трехмерные чертежи на клетчатой бумаге, читайте в самом начале методички Графики и свойства функций.

Любой вектор Что называют координатными векторамитрехмерного пространства можно единственным способом разложить по ортонормированному базису Что называют координатными векторами:
Что называют координатными векторами, где Что называют координатными векторами– координаты вектора Что называют координатными векторами(числа) в данном базисе.

Пример с картинки: Что называют координатными векторами. Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: Что называют координатными векторами(красная стрелка), Что называют координатными векторами(зеленая стрелка) и Что называют координатными векторами(малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: Что называют координатными векторами. Вектор суммы Что называют координатными вектораминачинается в исходной точке отправления (начало вектора Что называют координатными векторами) и утыкается в итоговую точку прибытия (конец вектора Что называют координатными векторами).

Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор Что называют координатными векторамиот любой другой точки, и вы поймёте, что его разложение Что называют координатными векторами«останется при нём».

Аналогично плоскому случаю, помимо записи Что называют координатными векторамишироко используются версии со скобками: Что называют координатными векторамилибо Что называют координатными векторами.

Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор Что называют координатными векторами(дотошно Что называют координатными векторами) – запишем Что называют координатными векторами;
вектор Что называют координатными векторами(дотошно Что называют координатными векторами) – запишем Что называют координатными векторами;
вектор Что называют координатными векторами(дотошно Что называют координатными векторами) – запишем Что называют координатными векторами.

Базисные векторы записываются следующим образом:
Что называют координатными векторами

Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

А мы переходим к практической части:

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть, даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти вектор по двум точкам?

Если даны две точки плоскости Что называют координатными векторамии Что называют координатными векторами, то вектор Что называют координатными векторамиимеет следующие координаты:
Что называют координатными векторами

Если даны две точки пространства Что называют координатными векторамии Что называют координатными векторами, то вектор Что называют координатными векторамиимеет следующие координаты:
Что называют координатными векторами

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора.

Задание: Для тех же точек запишите формулы нахождения координат вектора Что называют координатными векторами. Формулы в конце урока.

Даны две точки плоскости Что называют координатными векторамии Что называют координатными векторами. Найти координаты вектора Что называют координатными векторами

Решение: по соответствующей формуле:
Что называют координатными векторами

Как вариант, можно было использовать следующую запись:
Что называют координатными векторами

Эстеты решат и так: Что называют координатными векторами

Лично я привык к первой версии записи.

Ответ: Что называют координатными векторами

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:
Что называют координатными векторами

Обязательно нужно понимать различие между координатами точек и координатами векторов:

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису Что называют координатными векторами, в данном случае Что называют координатными векторами. Любой вектор является свободным, поэтому при желании или необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости (во избежание путаницы переобозначив, например, через Что называют координатными векторами). Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости Что называют координатными векторами.

Записи координат точек и координат векторов вроде бы схожи: Что называют координатными векторами, а смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

а) Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти векторы Что называют координатными векторамии Что называют координатными векторами.
б) Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти векторы Что называют координатными векторамии Что называют координатными векторами.
в) Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти векторы Что называют координатными векторамии Что называют координатными векторами.
г) Даны точки Что называют координатными векторами. Найти векторы Что называют координатными векторами.

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится ;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости Что называют координатными векторамии Что называют координатными векторами, то длину отрезка Что называют координатными векторамиможно вычислить по формуле Что называют координатными векторами

Если даны две точки пространства Что называют координатными векторамии Что называют координатными векторами, то длину отрезка Что называют координатными векторамиможно вычислить по формуле Что называют координатными векторами

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: Что называют координатными векторамии Что называют координатными векторами, но более стандартен первый вариант

Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти длину отрезка Что называют координатными векторами.

Решение: по соответствующей формуле:
Что называют координатными векторами

Ответ: Что называют координатными векторами

Для наглядности выполню чертёж
Что называют координатными векторами

Отрезок Что называют координатными векторамиэто не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ Что называют координатными векторамиможно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приёмвынесение множителя из-под корня. В результате вычислений у нас получился результат Что называют координатными векторамии хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: Что называют координатными векторами. Конечно, оставить ответ в виде Что называют координатными векторамине будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:
Что называют координатными векторами

Нередко под корнем получается достаточно большое число, например Что называют координатными векторами. Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: Что называют координатными векторами. Да, разделилось нацело, таким образом: Что называют координатными векторами. А может быть, число Что называют координатными векторамиещё раз удастся разделить на 4? Что называют координатными векторами. Таким образом: Что называют координатными векторами. У числа Что называют координатными векторамипоследняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: Что называют координатными векторами. В результате:
Что называют координатными векторамиГотово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:
Что называют координатными векторами

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти длину отрезка Что называют координатными векторами.

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости Что называют координатными векторами, то его длина вычисляется по формуле Что называют координатными векторами.

Если дан вектор пространства Что называют координатными векторами, то его длина вычисляется по формуле Что называют координатными векторами.

Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.

Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти длину вектора Что называют координатными векторами.

Я взял те же точки, что и в Примере 3.

Решение: Сначала найдём вектор Что называют координатными векторами:
Что называют координатными векторами

По формуле Что называют координатными векторамивычислим длину вектора:
Что называют координатными векторами

Ответ: Что называют координатными векторами

Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3 знаков после запятой.

Выполним чертеж к задаче:
Что называют координатными векторами

В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости, при этом его лучше переобозначить, например, через Что называют координатными векторами.

А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка Что называют координатными векторамиравна длине вектора Что называют координатными векторами. Так же очевидно, что длина вектора Что называют координатными векторамибудет такой же. По итогу: Что называют координатными векторами

Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти длину отрезка Что называют координатными векторами.

Вместо применения формулы Что называют координатными векторами, поступаем так:
1) Находим вектор Что называют координатными векторами.
2) А теперь ссылаемся на то, что длина отрезка Что называют координатными векторамиравна длине вектора Что называют координатными векторами:
Что называют координатными векторами

Этот способ широко практикуется в ходе решений задач аналитической геометрии.

Вышесказанное справедливо и для пространственного случая

а) Даны точки Что называют координатными векторамии Что называют координатными векторами. Найти длину вектора Что называют координатными векторами.
б) Даны векторы Что называют координатными векторами, Что называют координатными векторами, Что называют координатными векторамии Что называют координатными векторами. Найти их длины.

Решения и ответы в конце урока.

Действия с векторами в координатах

В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:

1) Правило сложения векторов. Рассмотрим два вектора плоскости Что называют координатными векторамии Что называют координатными векторами. Для того, чтобы сложить векторы, нужно сложить их соответствующие координаты: Что называют координатными векторами. Как просто. На всякий случай запишу частный случай – формулу разности векторов: Что называют координатными векторами. Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор Что называют координатными векторамии найдём сумму трёх векторов: Что называют координатными векторами

Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы Что называют координатными векторами, то их суммой является вектор Что называют координатными векторами.

2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор Что называют координатными векторамиумножить на число Что называют координатными векторами, нужно каждую координату данного вектора умножить на число Что называют координатными векторами:
Что называют координатными векторами.

Для пространственного вектора Что называют координатными векторамиправило такое же:
Что называют координатными векторами

Приведённые факты строго доказываются в курсе аналитической геометрии.

Примечание: Данные правила справедливы не только для ортонормированных базисов Что называют координатными векторами, Что называют координатными векторамино и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.

Даны векторы Что называют координатными векторамии Что называют координатными векторами. Найти Что называют координатными векторамии Что называют координатными векторами

Решение чисто аналитическое:
Что называют координатными векторами

Ответ: Что называют координатными векторами

Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе Что называют координатными векторами, то графическое решение задачи будет таким:
Что называют координатными векторами
Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)

Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.

Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):

Даны векторы Что называют координатными векторамии Что называют координатными векторами. Найти Что называют координатными векторамии Что называют координатными векторами

Решение: Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:
Что называют координатными векторами

Ответ: Что называют координатными векторами

И в заключение занятный пример с векторами на плоскости:

Даны векторы Что называют координатными векторами. Найти Что называют координатными векторамии Что называют координатными векторами

Это задача для самостоятельного решения.

Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:

Это, так скажем, вектор-минимум студента =)

Любите векторы, и векторы полюбят вас!

Задание: Что называют координатными векторами, Что называют координатными векторами

Пример 2: Решение:
а)
Что называют координатными векторами
б)
Что называют координатными векторами
в)
Что называют координатными векторами
г)
Что называют координатными векторами

Пример 4: Решение:
По соответствующей формуле: Что называют координатными векторамии Что называют координатными векторами
Что называют координатными векторами
Ответ:Что называют координатными векторами

Пример 6: Что называют координатными векторамии Что называют координатными векторами
а) Решение: найдём вектор Что называют координатными векторами:
Что называют координатными векторами
Вычислим длину вектора:
Что называют координатными векторами
Ответ: Что называют координатными векторами

б) Решение:
Вычислим длины векторов:
Что называют координатными векторами

Пример 9: Решение:
Что называют координатными векторами
Примечание: Перед выполнением действий можно предварительно раскрыть скобки:
Что называют координатными векторами

Ответ: Что называют координатными векторами

Автор: Емелин Александр

(Переход на главную страницу)

Что называют координатными векторами Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Что называют координатными векторами Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *