Что называют коэффициентом одночлена

Определение одночлена, сопутствующие понятия, примеры.

Одним из видов выражений курса алгебры являются одночлены. В этой статье мы разберемся, какие выражения называют одночленами, скажем про их стандартный вид и приведем примеры. А после этого подробно остановимся на сопутствующих понятиях – степени и коэффициенте одночлена.

Навигация по странице.

Что такое одночлен? Определение, примеры

Первое запланированное знакомство с одночленами происходит в 7 классе средней школы. Там дается следующее определение одночлена:

Одночлены – это числа, переменные, их степени с натуральным показателем, а также всевозможные составленные из них произведения.

До 7 класса в школе были изучены натуральные, целые и рациональные числа, они и фигурируют в приведенных выше примерах одночленов. Однако нужно заметить, что определение одночлена в указанной формулировке остается в силе после знакомства с действительными числами и комплексными числами. Так Что называют коэффициентом одночлена, 2·π·x 3 и Что называют коэффициентом одночлена— это тоже одночлены.

Стандартный вид одночлена

С одночленами удобно работать, когда они приведены к так называемому стандартному виду.

Любой одночлен путем тождественных преобразований может быть представлен в стандартном виде. Иными словами, можно любой одночлен привести к стандартному виду.

Степень одночлена

Для одночлена существует понятие его степени. Разберемся, что это такое.

Степень одночлена стандартного вида – это сумма показателей степеней всех переменных, входящих в его запись; если в записи одночлена нет переменных, и он отличен от нуля, то его степень считается равной нулю; число нуль считается одночленом, степень которого не определена.

Коэффициент одночлена

Одночлен в стандартном виде, имеющий в своей записи хотя бы одну переменную, представляет собой произведение с единственным числовым множителем – числовым коэффициентом. Этот коэффициент называют коэффициентом одночлена. Оформим приведенные рассуждения в виде определения.

Коэффициент одночлена – это числовой множитель одночлена, записанного в стандартном виде.

Источник

Одночлен и его стандартный вид

теория по математике 📈 алгебраические выражения

Одночлен – это простейшее алгебраическое выражение, которое состоит из произведения чисел, переменных и их степеней. Никаких других действий одночлен не имеет. Числовой множитель у одночлена называется коэффициентом.

Пример №1. Рассмотрим примеры одночленов.

Стандартный вид одночлена

Чтобы определить коэффициент у одночлена, он должен быть представлен в стандартном виде.

Что такое одночлен стандартного вида?

Одночлен стандартного вида – это одночлен, у которого на первом месте стоит коэффициент, а далее – буквенные множители (переменные).

Такие одночлены приведены в примере №1. Рассмотрим, как привести одночлен к стандартному виду.

Здесь выполняем умножение чисел 3 и (-2), затем степеней х и у (при умножении степеней с одинаковым основанием показатели складываем, а основание оставляем тем же); записываем на первом месте число (коэффициент одночлена), а затем уже степени. Получаем одночлен стандартного вида.

-12a 3 b 2 (-4b 7 )=48a 3 b 9

Данный ответ получен после умножения чисел и степеней с одинаковым основанием. Записан на первом месте коэффициент 48, а затем остальные множители.

Степень одночлена

Сумму показателей степени переменных называют степенью одночлена.

Рассмотрим, как найти степень одночлена.

– 113с 3 х 6

У переменных показатели степени равны 3 и 6, складываем их и получаем 9. Значит, степень одночлена равна 9. Пример №5.

18ху

У этого одночлена степень равна 2, так как у переменных х и у первая степень, складывая 1 и 1, получаем 2.

Источник

Коэффициент одночлена

Что такое коэффициент одночлена? Всегда ли пишут коэффициент?

Коэффициентом одночлена, записанного в стандартном виде, называется его числовой множитель.

Другими словами, коэффициент одночлена — это число, стоящее перед буквенной частью в произведении после приведения одночлена к стандартному виду.

Что называют коэффициентом одночлена

коэффициент равен 4;

Что называют коэффициентом одночлена

Что называют коэффициентом одночлена

Что называют коэффициентом одночлена

Если одночлен состоит только из числового множителя, то этот множитель и есть коэффициент. Например, в одночлене

Что называют коэффициентом одночлена

коэффициент равен 12.

Если в произведении перед буквенной частью не записан числовой множитель, значит, коэффициент одночлена равен единице:

Что называют коэффициентом одночлена

Что называют коэффициентом одночлена

Если одночлен записан не в стандартном виде, прежде чем находить коэффициент, нужно привести его к одночлену стандартного вида.

Источник

Понятие одночлена. Стандартный вид, коэффициент, степень

Содержание

Одночлен – одно из основополагающих понятий в алгебре. Данный урок поможет вам разобраться с его определением, а также со стандартным видом одночлена, степенью и коэффициентом.

Что такое одночлен

$$-5,5y^<12>\times 84b\times 302$$ То есть, в одночлен могут входить как несколько множителей, так и одно число или переменная.

Таким образом, запомним определение:

Числа, переменные, их степени с натуральным показателем, а также различные виды произведений, составленные из этих переменных, чисел и степеней, называют одночленами.

$$\frac<5^9>$$ Иными словами, выражения, содержащие сумму, разность или переменную в знаменателе дроби, одночленами являться не будут.

Стандартный вид одночлена

Для удобства математических вычислений одночлен принято приводить к стандартному виду. Разберемся, что это значит.

Стандартный вид одночлена подразумевает его запись с соблюдением нескольких правил:

Коэффициент

Коэффициентом одночлена называют числовой множитель одночлена, который записан в стандартном виде.

Заметим, что после тождественных преобразований можно привести к стандартному виду абсолютно любой одночлен.

Пример

Степень одночлена

Таким образом, запомним:

Степенью одночлена, записанного в стандартном виде, будет сумма показателей степеней всех переменных, которые в него входят.

Источник

Одночлены

Определения и примеры

Приведём ещё примеры одночленов:

Что называют коэффициентом одночлена

Одночленом также является любое отдельное число, любая переменная или любая степень. Например, число 9 является одночленом, переменная x является одночленом, степень 5 2 является одночленом.

Приведение одночлена к стандартному виду

Рассмотрим следующий одночлен:

Что называют коэффициентом одночлена

Этот одночлен выглядит не очень аккуратно. Чтобы сделать его проще, нужно привести его к так называемому стандартному виду.

Приведение одночлена к стандартному виду заключается в перемножении однотипных сомножителей, входящих в этот одночлен. То есть числа нужно перемножать с числами, переменные с переменными, степени со степенями. В результате этих действий получается упрощённый одночлен, который тождественно равен предыдущему.

Ещё один нюанс заключается в том, что в одночлене степени можно перемножать только в том случае, если они имеют одинаковые основания.

Итак, приведём одночлен 3a 2 5a 3 b 2 к стандартному виду. В этом одночлене содержатся числа 3 и 5. Перемножим их, получим число 15. Записываем его:

Мы привели одночлен 3a 2 5a 3 b 2 к стандартному виду. В результате получили одночлен 15a 5 b 2

Числовой сомножитель 15 называют коэффициентом одночлена. Приводя одночлен к стандартному виду, коэффициент нужно записывать в первую очередь, и только потом переменные и степени.

Если коэффициент в одночлене отсутствует, то говорят, что коэффициент равен единице. Так, коэффициентом одночлена abc является 1, поскольку abc это произведение единицы и abc

Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.

Если одночлен не содержит переменных или степеней, а состоит из числа, то говорят, что степень такого одночлена равна нулю. Например, степень одночлена 11 равна нулю.

Не следует путать степень одночлена и степень числа. Степень числа это произведение из нескольких одинаковых множителей, тогда как степень одночлена это сумма показателей всех переменных входящих в этот одночлен. В одночлене 11 нет переменных, поэтому его степень равна нулю.

Пример 1. Привести одночлен 5xx3ya 2 к стандартному виду

Перемножим числа 5 и 3, получим 15. Это будет коэффициент одночлена:

Пример 2. Привести одночлен 2m 3 n × 0,4mn к стандартному виду

Перемножим числа, переменные и степени по отдельности.

Числа, переменные и степени при перемножении разрешается заключать в скобки. Делается это для удобства. Так, в данном примере перемножение чисел 2 и 0,4 можно заключить в скобки. Также в скобки можно заключить перемножение m 3 × m и n × n

Но желательно выполнять все элементарные действия в уме. Так, решение можно записать значительно короче:

Но чтобы в уме приводить одночлен к стандартному виду, тема умножения целых чисел и умножения степеней должна быть изучена на хорошем уровне.

Сложение и вычитание одночленов

Одночлены можно складывать и вычитать. Чтобы это было возможно, они должны иметь одинаковую буквенную часть. Коэффициенты могут быть любыми. Сложение и вычитание одночленов это по сути приведение подобных слагаемых, которое мы рассматривали при изучении буквенных выражений.

Чтобы сложить (вычесть) одночлены, нужно сложить (вычесть) их коэффициенты, а буквенную часть оставить без изменений.

Пример 1. Сложить одночлены 6a 2 b и 2a 2 b

Сложим коэффициенты 6 и 2, а буквенную часть 6a 2 b оставим без изменений

Пример 2. Вычесть из одночлена 5a 2 b 3 одночлен 2a 2 b 3

Можно заменить вычитание сложением, и сложить коэффициенты одночленов, оставив буквенную часть без изменения:

Либо сразу из коэффициента первого одночлена вычесть коэффициент второго одночлена, а буквенную часть оставить без изменения:

Умножение одночленов

Одночлены можно перемножать. Чтобы перемножить одночлены, нужно перемножить их числовые и буквенные части.

Пример 1. Перемножить одночлены 5x и 8y

Перемножим числовые и буквенные части по отдельности. Для удобства перемножаемые сомножители будем заключать в скобки:

Пример 2. Перемножить одночлены 5x 2 y 3 и 7x 3 y 2 c

Перемножим числовые и буквенные части по отдельности. В процессе умножения будем применять правило перемножения степеней с одинаковыми основаниями. Перемножаемые сомножители будем заключать в скобки:

Пример 3. Перемножить одночлены −5a 2 bc и 2a 2 b 4

Пример 4. Перемножить одночлены x 2 y 5 и (−6xy 2 )

Пример 5. Найти значение выражения Что называют коэффициентом одночлена

Что называют коэффициентом одночлена

Деление одночленов

Одночлен можно разделить на другой одночлен. Для этого нужно коэффициент первого одночлена разделить на коэффициент второго одночлена, а буквенную часть первого одночлена разделить на буквенную часть второго одночлена. При этом используется правило деления степеней.

Например, разделим одночлен 8a 2 b 2 на одночлен 4ab. Запишем это деление в виде дроби:

Что называют коэффициентом одночлена

Первый одночлен 8a 2 b 2 будем называть делимым, а второй 4ab — делителем. А одночлен, который получится в результате, назовём частным.

Что называют коэффициентом одночлена

Что называют коэффициентом одночлена

Что называют коэффициентом одночлена

Не всегда можно первый одночлен разделить на второй одночлен. Например, если в делителе окажется переменная, которой нет в делимом, то говорят, что деление невозможно.

Но если в делимом содержится переменная, которая не содержится в делителе, то деление будет возможным. В этом случае переменная, которая отсутствовала в делителе, будет перенесена в частное без изменений.

Что называют коэффициентом одночлена

Но в некоторых дробях, если невозможно выполнить деление, бывает возможным выполнить сокращение. Делается это с целью упростить выражение.

Что называют коэффициентом одночлена

В числителе и знаменателе мы пришли к делению одночленов, которое можно выполнить:

Что называют коэффициентом одночлена

Процесс деления обычно выполняется в уме, записывая над числителем и знаменателем получившийся результат:

Что называют коэффициентом одночлена

Пример 2. Разделить одночлен 12a 2 b 3 c 3 на одночлен 4a 2 bc

Что называют коэффициентом одночлена

Пример 3. Разделить одночлен x 2 y 3 z на одночлен xy 2

Что называют коэффициентом одночлена

Дополнительно упомянем, что деление одночлена на одночлен также невозможно, если одна из степеней, входящая в делимое, имеет показатель меньший, чем показатель той же степени из делителя.

Что называют коэффициентом одночлена

и такое частное при перемножении с делителем x 2 будет давать в результате делимое 2x

Что называют коэффициентом одночлена

Но нас пока интересуют только те частные, которые являются так называемыми целыми выражениями. Целые выражения это те выражения, которые не являются дробями, в знаменателе которых содержится буквенное выражение. А частное Что называют коэффициентом одночленацелым выражением не является. Это дробное выражение, в знаменателе которого содержится буквенное выражение.

Возведение одночлена в степень

Одночлен можно возвести в степень. Для этого используют правило возведения степени в степень.

Пример 1. Возвести одночлен xy во вторую степень.

Чтобы возвести одночлен xy во вторую степень, нужно возвести во вторую степень каждый сомножитель этого одночлена

Пример 2. Возвести одночлен −5a 3 b во вторую степень.

Пример 3. Возвести одночлен − a 2 bc 3 в пятую степень.

В данном примере коэффициентом одночлена является −1. Этот коэффициент тоже нужно возвести в пятую степень:

Пример 4. Представить одночлен 4x 2 в виде одночлена, возведённого в квадрат.

Пример 5. Представить одночлен 121a 6 в виде одночлена, возведённого в квадрат.

Таким образом, если произведение 11a 3 возвести во вторую степень, то получится 121a 6

(11a 3 ) 2 = 11 2 × (a 3 ) 2 = 121a 6

Разложение одночлена на множители

Поскольку одночлен является произведением чисел, переменных и степеней, то он может быть разложен на множители, из которых состоит.

Пример 1. Разложить одночлен 3a 3 b 2 на множители

Данный одночлен можно разложить на множители 3, a, a, a, b, b

Либо степень b 2 можно не раскладывать на множители b и b

В каком виде представлять одночлен зависит от решаемой задачи. Главное, чтобы разложение было тождественно равно исходному одночлену.

Пример 2. Разложить одночлен 10a 2 b 3 c 4 на множители.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *