Что называют группой соединения трансформатора
Группы соединений обмоток трансформаторов
Группы соединений обмоток трансформаторов.
Между первичной и вторичной э. д. с. трансформатора, включенного под напряжение, может быть угол сдвига, который в общем случае зависит от схемы соединения и направления намотки обмоток, а также от обозначения (маркировки) зажимов.
Дополнительно по теме
Чтобы упорядочить все многообразие схем соединений обмоток трансформаторов, введено понятие о группе соединений, характеризующее угловое смещение векторов линейных э. д. с. вторичных обмоток относительно одноименных векторов линейных э. д. с. обмотки ВН, независимо от того, является ли трансформатор понижающим или повышающим. Группа соединений обозначается числом, которое при умножении на 30° дает угол отставания вектора э. д. с. вторичной обмотки. Если, например, схема и группа соединений трансформатора обозначена У/Д-11, то смещение векторов линейных э.д.с. равно 330°.
Рис. 2. Два варианта схем соединения фазных обмоток НН треугольником.
В ГОСТ предусмотрены две группы соединения обмоток трехфазных двухобмоточных трансформаторов: 0 и 11. Практически могут встретиться 12 групп и, кроме того, такие соединения, которые вообще
не могут быть отнесены к какой-либо определенной группе. Заметим, что нестандартные группы могут быть получены ошибочно при монтаже и ремонте оборудования без вскрытия трансформатора и пересоединения его обмоток. Для этого достаточно, например, перекрасить шины фаз или перемаркировать обозначения выводов. Типичными являются следующие случаи. При перемещении
Рис. 3. Циклическая перемаркировка фаз обмотки в стандартной схеме У/У-О.
Рис.4. Циклическая перемаркировка фаз при ошибочном монтаже ошиновки.
Обозначение фаз НН, соответствующее группе У/У-0 показано в скобках.
Рис. 5. Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН.
Рис. 6. Ошибочное обозначение выводов двух фаз.
Одним из основных условий параллельной работы трансформаторов является тождественность групп соединений их обмоток, что устанавливается по паспортным данным или специальными измерениями. Но даже при одинаковых группах перед первым включением в работу (после монтажа или капитального ремонта со сменой обмоток, отсоединением кабелей и пр.) трансформатор фазируют с сетью, так как на зажимах включающего аппарата (выключателя, отделителя, рубильника) может появиться сдвиг фаз в результате неправильного присоединения токоведущих частей к аппаратам и выводам трансформатора, о чем было сказано выше. Здесь следует особо подчеркнуть, что цель фазировки заключается не в определении группы, к которой принадлежит включаемый трансформатор, а в проверке согласованности соединяемых фаз всех элементов трехфазной цепи как со стороны высшего, так и низшего напряжений.
Группа соединения обмоток
Рисунок 1 Группы обмоток
Для однофазных трансформаторов возможны только две группы соединения обмоток:
— 0 (нулевая, векторы первичного и вторичного напряжения совпадают, рисунок 2, а);
— 6 (шестая, векторы первичного и вторичного напряжения направлены в разные стороны, рисунок 2, б).
Рисунок 2 Группы соединения обмоток однофазного трансформатора
Вторичные напряжения обмоток трехфазных трансформаторов, расположенных на одном и том же стержне, могут либо совпадать по фазе, либо быть направлены в противоположных направлениях, как это показано на рисунке 2 для однофазных трансформаторов.
В зависимости от схемы соединения обмоток трёхфазного трансформатора (звезда – Y, треугольник – Д (или Δ), зигзаг – Z) и наличия (отсутствия) нулевого вывода, возможно получить различные группы соединения обмоток.
Четные группы (2, 4, 6, 8, 10, 12) соответствуют тем случаям, когда обе обмотки высшего напряжения (ВН) и низшего напряжения (НН) имеют одинаковые соединения – обе в звезду или обе в треугольник.
К четным относят и группы, образованные при соединении одной обмотки в зигзаг – звезду при другой обмотке, соединенной в треугольник.
Нечетные группы (1, 3, 5, 7, 9, 11) получают при соединении одних обмоток в звезду, а других – в треугольник, а также, если одни обмотки соединены в зигзаг – звезду, а другие – в звезду.
Количество групп соединений трансформаторов ограничено стандартами, например, [1]. Но в практике можно столкнуться со всеми 12 группами и даже с такими соединениями, когда направления вращения (порядок чередования фаз [4]) векторов ВН и НН не совпадают *1.
Ошибочно получить не ту группу, которая требуется, можно по многим причинам, например, вследствие дефектов маркировки фаз, перекрещивания фаз и тому подобного.
Поэтому перед включением трансформатора в работу всегда необходимо проверить группу соединения его обмоток.
Технология проведения такой проверки изложена в [2, 3].
Литература.
1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Алексенко Г.В. Параллельная работа трансформаторов и автотрансформаторов. М.-Л.: Энергия, 1967, 608 с.
З. Захаров О.Г. Поиск дефектов в релейно-контакторных схемах.
М.: Инфра-Инженерия, 2017, 212 с.
4. Захаров О.Г. Словарь-справочник по настройке и испытаниям судового электрооборудования. Л.: Судостроение, 1987, 216 с.
РАНСФОРМАТОРЫ СИЛОВЫЕ
5. ГОСТ Р 52719-2007. Трансформаторы силовые. Общие технические условия // [Электронный ресурс], режим доступа:
http://www.gosthelp.ru/text/GOSTR527192007Transformat.html
*1 Такие трансформаторы не имеют группы в часовом обозначении, в соответствии с рисунком 1.
Группы соединения обмоток трансформаторов
Для определения группы соединений используют аналогию со стрелочными часами. Минутная стрелка часов совмещается с напряжением ВН и устанавливается на цифре 0 (12), а часовая совмещается с одноименным напряжением НН и указывает на группу соединения (рисунок 1.9).
Рис. 1.9. Определение группы соединения обмоток трансформаторов.
В однофазных трансформаторах угол между напряжениями ВН и НН может быть равен 0 или 180°, что соответствует группам 0 или 6 и обозначаются I/I-0 или I/I-6. В трехфазных трансформаторах линейные напряжения ВН и НН могут быть сдвинуты на угол, кратный 30°.
Различные группы получают сочетанием схем соединения фаз обмоток с маркировкой зажимов этих фаз по стержням трансформатора.
Четные номера групп образуются при однотипных схемах соединения обмоток ВН и НН (Y/Y, D/D), нечетные – при разнотипных схемах соединения (Y/D, D/Y и др.).
Группы соединения 0, 6, 11, 5 называются основными. У основных групп катушки фаз с одинаковой маркировкой выводных зажимов располагаются на одних и тех же стержнях, у производных – на различных. Производные группы соединения обмоток получаются из основных путем круговой перемаркировки обозначений выводов (например, из ABC в CBA и др.).
Путем круговой перемаркировки обозначений выводов одинаково обозначенные напряжения поворачиваются на угол 120° = 4×30°: номер группы изменяется на 4.
Рис. 3.4. Основные схемы и группы соединений обмоток трехфазных трансформаторов с векторными диаграммами.
Перемена местами обозначения начал и концов фазных обмоток изменяет фазу всех напряжений на 180°: номер группы изменяется на 6.
При замене обмотки НН на обмотку ВН или обмотки ВН на обмотку НН с сохранением их соединений и маркировки номер группы изменяется с на (например, при изменении схемы обмоток с Δ/Y0-11 на Y0/Δ группа изменяется с 11 на 1).
При соединении обмоток трансформатора в треугольник группа зависит также от способа объединения обмоток в треугольник. Так, при изменении соединения выводов с а–у, b–z, с–х на а–z, b–х, с–у линейные напряжения поворачиваются на 60° = 2×30°: номер группы увеличивается на 2.
Из всех возможных групп соединения трехфазных двухобмоточных трансформаторов используются только группы 0 и 11 с выводом в случае необходимости нулевой точки звезды (Y/Y0-0, Y/Δ-11, Y0/Δ-11). Стандартом также предусмотрена группа соединения Δ/Y0-11 (рисунок 3.7).
Экспериментальное определение группы соединения обмоток. Существует несколько методов определения группы соединения обмоток трансформаторов, среди которых наиболее распространены метод фазометра, метод вольтметра, метод моста, метод постоянного тока.
Метод фазометра (прямой метод) основан на непосредственном измерении угла фазового сдвига между соответствующими линейными напряжениями (ЭДС) обмоток ВН и НН с помощью фазометра , включенного по схеме, показанной на рисунке 1.10. Параллельную обмотку фазометра U-U* подключают к стороне ВН, а последовательную обмотку I-I* к стороне НН. Для ограничения тока в последовательной обмотке ее подключают через добавочное сопротивление . Затем трансформатор включают в сеть с симметричным трехфазным напряжением. Для удобства измерений желательно, чтобы фазометр имел полную (360°) шкалу.
Метод вольтметра – это косвенный метод проверки группы соединений, основанный на измерении вольтметром напряжений (ЭДС) между одноименными выводами обмоток ВН и НН.
Если проверяют группу соединения Y/Y-0, рисунок 1.10, то, соединив проводом выводы А и а, измеряют напряжение (между выводами B и b) и (между выводами C и c). Если предполагаемая группа соединения Y/Y-0 соответствует фактической, то
,
где – отношение линейных напряжений (ЭДС) ВН и НН, т.е. коэффициент трансформации линейных напряжений (ЭДС).
Если проверяют группы соединения 6, 11 или 5, то для проверки измеренных значений напряжений пользуются формулами:
группа Y/Y-6 ,
группа Y/Δ-11 ,
группа Y/Δ-5 .
Если условия равенства напряжений по приводимым формулам не соблюдаются, то это свидетельствует о нарушениях в маркировке выводов трансформатора.
Рис. 1.10. Определение групп соединения обмоток трехфазных трансформаторов методами фазометра (слева) и вольтметра (справа).
Метод моста. Применяется при определении группы соединения обмоток трансформатора одновременно с измерением коэффициента трансформации с помощью компенсационного моста.
Метод постоянного тока применяется в однофазных трансформаторах и трехфазных трансформаторах со схемой соединения Y0/Y0 или Δ/Δ, если соединение выполнено вне бака трансформатора. Начала и концы входных обмоток поочередно включают на постоянное напряжение и определяют полярность напряжения на соответствующих выходных зажимах с помощью магнитоэлектрического вольтметра. Полярность проверяют в момент замыкания ключа. При одинаковой полярности трансформатор относится к группе 0, при различной – к группе 6.
Определение группы соединения обмоток трансформаторов
Группой соединения обмоток трансформатора называется угол сдвига между векторами одноименных линейных ЭДС первичной (ВН) и вторичной (НН) обмоток трансформатора.
1. Для характеристики относительного сдвига фаз линейных ЭДС обмоток ВН и НН вводится понятие группы соединения обмоток трансформатора.
2. Фазовый сдвиг между одноименными линейными ЭДС обмоток ВН и НН зависит от обозначения их выводов (концов), от направления намотки и от схемы соединения. Этот угол, как будет показано далее, кратен 30°.
Группа соединения обозначается целым положительным числом, получающимся от деления на 30° угла сдвига между линейными ЭДС одноименных обмоток ВН и НН трансформатора. Отсчет угла производят от вектора ЭДС ВН по направлению вращения часовой стрелки.
Трансформаторы, имеющие одинаковый сдвиг фаз между линейными ЭДС обмоток ВН и НН, относятся к одной и той же группе соединения.
В трехфазных трансформаторах схемы соединения Y, D, Z («звезда», «треугольник», «зигзаг») могут образовывать 12 различных групп со сдвигом фаз линейных ЭДС через 30°. В связи с этим на практике принято определять группу соединения с помощью стрелок на часовом циферблате (угол между любыми двумя цифрами кратен 30°). Это так называемый «часовой метод» определения группы соединения трансформатора.
Для определения группы соединения трансформатора по «часовому методу» необходимо совместить минутную стрелку вектором линейной ЭДС обмотки ВН, а часовую – с вектором линейной ЭДС обмотки НН. Далее обе стрелки поворачиваются так, чтобы минутная стрелка показывала на цифру 12, тогда часовая стрелка укажет час, соответствующий группе соединения трансформатора.
Рассмотрим определение группы соединения при помощи топографической векторной диаграммы на примере соединения обмоток трансформатора по схеме Y/ Y – 0.
Задавшись произвольной маркировкой выводов обмоток ВН и НН, и соединив электрически два одноименных зажима (например, A и a, рис.7), измеряют ЭДС .
Выбрав масштаб, строят векторную диаграмму линейных ЭДС первичной обмотки (ВН). Так как выводы A и а совпадают, то на диаграмме эти точки должны быть совмещены. Точка b строится следующим образом. Строится окружность радиусом, равным с центром в точке B. Далее строится еще одна окружность радиусом, равным с центром в точке С. Точкой пересечения этих окружностей и является точка b, которая находится на расстоянии от точки a. Аналогичным образом строится точка c, которая находиться на расстоянии от точки а. По углу сдвига между одноименными линейными ЭДС определяется группа соединения (в рассматриваемом случае Y/ Y – 0).
Схемы соединения обмоток трехфазных трансформаторов могут образовывать группы:
· Y/Y, D/D, D/Z образуют четные группы: 0, 2, 4, 6, 8, 10;
· Y/D, D/Y, Y/Z образуют нечетные группы: 1, 3, 5, 7, 9, 11.
При построении векторных диаграмм необходимо руководствоваться следующими правилами. Направление намотки всех обмоток считается одинаковым; векторы ЭДС обмоток ВН и НН, расположенные на одном стержне, совпадают по фазе, если в рассматриваемый момент времени ЭДС этих обмоток направлены к одноименным выводам, а если наоборот, то сдвинуты на 180°.
Трехфазные трансформаторы с соединением обмоток Y/Y, D/D, D/Z образуют группы 0 и 6, с соединением обмоток Y/D, D/Y, Y/Z – группы 11 и 5, если на каждом стержне магнитопровода размещены одноименные фазы.
Если у одной из стороны, например НН, сделать перемаркировку (не изменяя самих соединений) обозначений выводов (без изменения самих соединений): вместо a – b – c сделать с – a – b и затем b– c – a, то можно получить из группы 0 соответственно группы 4 и 8, из группы 6 – группы 10 и 2; из группы 11 – группы 3 и 7, из группы 5 – группы 9 и 1.
Убедившись, что оба трансформатора принадлежат к одной группе, делается заключение о возможности включения их на параллельную работу.
,
трансформаторы могут выйти из строя.
Параллельная работа трансформаторов
При снятии внешней характеристики следует изменять величину сопротивления нагрузки во вторичной цепи трансформаторов. Измерения производят в 5 – 6 точках, начиная от х.х. до .
Суммарный ток нагрузки
Показания приборов заносятся в табл.8. По полученным данным строится зависимость при .
Таблица 8
Понятие группы соединения обмоток трансформаторов, таблицы и схемы
Любой трансформатор, за исключением автотрансформатора, имеет минимум две обмотки: высокого и низкого напряжений. Также у трехфазных устройств каждая из обмоток состоит из трех частей (по числу фаз). Большое количество частей дает возможность множества вариантов включения. Чтобы избежать путаницы, все группы соединения обмоток трансформатора для трехфазных устройств стандартизированы и приведены к единой системе для безошибочного подключения устройств и возможности параллельной работы.
Понятие группы соединение обмоток трехфазного трансформатора
В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении конструкций может показаться, что существует всего четыре вида расположения обмоток:
На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 1800.
Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.
Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 1200. Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.
Условные обозначения и расшифровка
Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:
Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.
Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы — производные.
Так как минимальный сдвиг фаз может составлять 300, то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают. На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:
Приняты следующие обозначения на электросхемах и устройствах:
Пример маркировки двухобмоточного трансформатора:
Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:
Аналогично для стороны низкого напряжения:
Подобным образом маркируются многообмоточные устройства, например:
Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.
Как строятся векторные диаграммы
При построении векторных диаграмм надо запомнить правило, что сдвиг фаз меду фазами равняется 1200, то есть, при равенстве напряжений, концы векторов всегда будут образовывать равносторонний треугольник.
Наиболее просто составляется диаграмм для соединения звезда. В центре диаграммы ставится точка, которая соответствует объединенным концам обмоток. Из центра под углами 1200 проводятся векторы фаз. Вертикально проводят вектор средней фазы.
Для треугольника начерно проводят линию, параллельную соответствующей фазы звезды, а от ее концов, соответственно, подсоединенные к ней оставшиеся две фазы. Должно соблюдаться условие — все стороны треугольника должны быть параллельны соответствующим фазам звезды. Искомыми векторами будут проведенные линии из центра треугольника к его вершинам.
Векторные диаграммы рисуются для высокой и низкой сторон, а затем совмещаются с единым центром. Угол между одинаковыми фазами будет показывать номер группы соединения, выраженный в часах.
Отсчет нужно брать от вектора высокого напряжения к низкому.
Таблица групп соединений
В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.
Группа соединения | Обозначение | Чередование фаз |
0 | Y/Y-0 | C, B, A |
c, b, a | ||
∆/∆-0 | C, B, A | |
c, b, a | ||
1 | Y/∆-1 | C, B, A |
c, b, a | ||
∆/Y-1 | C, B, A | |
c, b, a | ||
2 | Y/Y-2 | C, B, A |
c, b, a | ||
∆/∆-2 | C, B, A | |
а, c, b | ||
3 | Y/∆-3 | C, B, A |
b, a, с | ||
∆/Y-3 | C, B, A | |
b, a, с | ||
4 | Y/Y-4 | C, B, A |
b, a, с | ||
∆/∆-4 | C, B, A | |
b, a, с | ||
5 | Y/∆-5 | C, B, A |
c, b, a | ||
∆/Y-5 | C, B, A | |
c, b, a | ||
6 | Y/Y-6 | C, B, A |
c, b, a | ||
∆/∆-6 | C, B, A | |
c, b, a | ||
7 | Y/∆-7 | C, B, A |
c, b, a | ||
∆/Y-7 | C, B, A | |
c, b, a | ||
8 | Y/Y-8 | C, B, A |
а, c, b | ||
∆/∆-8 | C, B, A | |
c, b, a | ||
9 | Y/∆-9 | C, B, A |
b, a, с | ||
∆/Y-9 | C, B, A | |
b, a, с | ||
10 | Y/Y-10 | C, B, A |
c, b, a | ||
∆/∆-10 | C, B, A | |
b, a, с | ||
11 | Y/∆-11 | C, B, A |
c, b, a | ||
∆/Y-11 | C, B, A | |
c, b, a |
Определение методом гальванометра
Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ — использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.
Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.
Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.
Проверка
Если известен коэффициент трансформации, то при помощи вольтметра можно определить номер основной группы соединения. Для этой цели подают напряжение на концы А и а или x и y и измеряют напряжения на выводах В-в и С-с при соединении звездой или B-y и C-z при соединении треугольником. Для проверки используют следующие соотношения:
UBb = UCc = UAa(k-1) Группа Y/Y-0
UBy = UCz = Uxy(k+1) Y/Y-6
UBb = UCc = UAa(√(1-√3k+k2)) Y/∆-11
UBy = UCz = Uxy(√(1+√3k+k2)) Y/∆-5
Для исключения повреждения оборудования, возникновения аварийных ситуаций и травмирования, все измерения следует производить при низком напряжении, не включая оборудование в основную сеть предприятия.
Примеры групповых соединений обмоток
Государственным стандартом предусмотрены только две группы соединения обмоток:
Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.
Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.
Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.
Ошибочные обозначения
Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.
Чтобы исключить случаи неправильного включения, рекомендуется после ремонта оборудования или перед включением неизвестных устройств тщательно проверить фазировку каждой обмотки несколькими методами для исключения возможных ошибок.
Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра. Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений.
Что такое группы соединения у трансформатора?
Мы уже рассмотрели соединение трансформаторов в треугольник, звезду и зигзаг. Теперь остановимся более подробно на группах соединения трансформаторов. Обмотки низкого, среднего и высокого напряжения трансформаторов могут соединяться по-разному — в треугольник, звезду, реже зигзаг, образуя схему соединения обмоток трансформатора.
Схема соединения — это сочетание схем соединения обмоток высшего и низшего напряжения для двухобмоточного трансформатора или обмоток высшего, среднего и низшего для трехобмоточного трансформатора. Однако, несмотря на различное соединение обмоток, схемы могут давать одинаковый сдвиг между одноименными векторами напряжения. Несколько схем, дающих одинаковый по величине угол сдвига фаз, образуют группу соединения.
Основных групп может быть 12. Для удобства представляют циферблат стрелочных часов. Каждой группе соответствует угол кратный 30 градусам от 0 до 360 градусов. Они отмечаются на циферблате часов, через один час, каждому часу соответствует сдвиг в 30 градусов. 360 градусов — 12 часов.
Групп 12 и имеется следующая закономерность — четные группы (2,4,6,8,10,12) образуются, если с высокой и низкой стороны одинаковое соединение (треугольник-треугольник, звезда-звезда). Нечетные группы (1,3,5,7,9,11) образуются, если с высокой и низкой сторон различное соединение (треугольник-звезда).
В ГОСТ 30830-2002 пишется, что вектор фазы А ВН откладывается параллельно и сонаправленно стрелке на 12 часов. Порядок фаз идет А-В-С, движение векторов на циферблате осуществляется против часовой стрелки.
Чтобы построить треугольник, сначала надо построить звезду, а потом вписать ее в треугольник.
Вот, например, двухобмоточный трехфазный трансформатор со схемой Y/Д-11, для примера. Где Y-значит звезда с высокой стороны, Д-треугольник с низкой стороны, между ними угол 360 градусов.
Если трансформатор трехобмоточный, то может быть (возьмем ради примера) Y0/Y/Д-12-5. Все как и в прошлом примере, только добавилась обмотка среднего напряжения. В этом примере обмотка ВН — звезда с нулем, СН — звезда, НН — треугольник. Сдвиг между обмотками ВН и СН — 12 часов, между ВН и НН — 11 часов (или 0 часов). Между СН и НН — 11 часов, про это писалось выше.
Существуют определенные действия с выводами обмоток, выполнив которые, можно добиться определенного результата группами трансформаторов.
Схемы групп соединения обмоток 3ф. 2обм. трансформаторов
Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.
Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.
12 группа (Y/Y-12, Д/Д-12)
Рисунок 1 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12
11 группа (Y/Д-11, Д/Y-11)
Рисунок 2 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11
10 группа (Д/Д-10, Y/Y-10)
Рисунок 3 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10
9 группа (Y/Д-9, Д/Y-9)
Рисунок 4 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9
8 группа (Y/Y-8, Д/Д-8)
Рисунок 5 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8
7 группа (Y/Д-7, Д/Y-7)
Рисунок 6 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7
6 группа (Y/Y-6, Д/Д-6)
Рисунок 7 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6
5 группа (Y/Д-5, Д/Y-5)
Рисунок 8 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5
4 группа (Y/Y-4, Д/Д-4)
Рисунок 9 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4
3 группа (Y/Д-3, Д/Y-3)
Рисунок 10 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3
2 группа (Y/Y-2, Д/Д-2)
Рисунок 11 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2
1 группа (Y/Д-1, Д/Y-1)
Рисунок 12 — схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1
Укажем некоторые особенности отдельных схем:
Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;
Схема Д/Д-12 — обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.
Схема Д/Д-10 — обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;
Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.
Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.
Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.
Виды трансформаторов. Где и для чего применяются?
Здравствуйте, дорогие друзья! Сегодня поговорим про виды трансформаторов, рассмотрим их общее устройство и принцип работы, узнаем где применяются. И так…
В энергетике и электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.
Общее устройство и принцип работы
Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.
Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.
В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода — сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.
Типы трансформаторов
В соответствии со своими параметрами и характеристиками, все виды трансформаторов разделяются:
Среди многообразных трансформаторных устройств чаще всего встречаются трансформаторы:
Силовые трансформаторы
Термином «силовой» определяют назначение, связанное с преобразованием высоких мощностей. Вызвано это тем, что большинство бытовых и производственных потребителей электрических сетей нуждаются в питании напряжением 380/220 вольт. Однако доставка его на большие расстояния связана с огромными потерями энергии, которые снижаются за счет использования высоковольтных линий.
Воздушные ЛЭП высокого напряжения соединяют в единую сеть подстанции с силовыми трансформаторами соответствующего класса.
Силовой трансформатор 110 кВ
А по другим линиям напряжение 6 или 10 кВ подводится к силовым трансформаторам, обеспечивающих питанием 380/220 вольт жилые комплексы и производственные предприятия.
Силовой мачтовый трансформатор 10 на 0,4 кВ
Измерительные трансформаторы
В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:
Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.
Трансформаторы тока
Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.
Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.
Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.
Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.
Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.
Измерительные трансформаторы тока 110 кВ
Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.
Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.
Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.
Трансформаторы напряжения
Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.
Измерительный трансформатор напряжения 110 кВ
Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.
Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.
За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.
Специальные виды трансформаторов
К этой группе относят:
Разделительные трансформаторы
Размещение двух обмоток совершенно одинаковой конструкции на общем магнитопроводе позволяет из 220 вольт 50 герц на входе получать такое же напряжение на выходе.
Напрашивается вопрос: зачем делать такое преобразование? Ответ прост: в целях обеспечения электрической безопасности.
Разделительный трансформатор с системой контроля изоляции, тока нагрузки, температуры трансформатора
При пробое изоляционного слоя провода первичной схемы, на корпусе прибора появляется опасный потенциал, который по случайно сформированной цепи через землю способен поразить человека электрическим током, нанести ему электротравму.
Гальваническое разделение схемы позволяет оптимально использовать питание электрооборудования и в то же время исключает получение травм при пробоях изоляции вторичной схемы на корпус.
Поэтому разделительные трансформаторы широко используются там, где проведение работ с электроинструментом требует принятия дополнительных мер безопасности. Также они широко используются в медицинском оборудовании, допускающем непосредственный контакт с телом человека.
Высокочастотные трансформаторы
Отличаются от обычных материалом магнитопровода, который способен, в отличие от обычного трансформаторного железа, хорошо, без искажений передавать высокочастотные сигналы.
Используется в электротермии, в частности при индукционном нагреве в электротермических установках для высокочастотной сварки металлов, плавки, пайки, закалки и т.д.
Согласующие трансформаторы
Основное назначение — согласование сопротивлений разных частей в электронных схемах. Согласующие трансформаторы нашли широкое применение в антенных устройствах и конструкциях усилителей на электронных лампах звуковых частот.
Сварочные трансформаторы
Первичная обмотка создается с большим число витков, позволяющих нормально обрабатывать электрическую энергию с входным напряжением 220 или 380 вольт. Во вторичной обмотке число витков значительно меньше, а ток протекающий по ним высокий. Он может достигать тысяч ампер.
Поэтому толщина провода этой цепи выбирается повышенного поперечного сечения. Для управления сварочным током существует много различных способов.
Сварочные трансформаторы массово работают в промышленных установках и пользуются популярностью у любителей изготавливать различные самоделки своими руками.
Рассмотренные виды трансформаторов являются наиболее распространёнными. В электрических схемах работают и другие подобные устройства, выполняющие специальные задачи технологических процессов.
Смотрите также по теме:
Трансформатор Тесла (Tesla coil). Делаем своими руками.
Принцип работы трансформатора. Устройство и режимы работы.