Что называется постоянной времени цепи
Природе свойственны периодические процессы: день сменяет ночь, теплое время года сменяется холодным и т. д. Период этих событий почти постоянен и поэтому может быть строго определен. Кроме того, мы вправе утверждать, что приведенные в качестве примера периодические природные процессы не являются затухающими, по крайней мере по отношению к продолжительности жизни одного человека.
Сплошь и рядом в электротехнике можно встретить так называемые экспоненциальные переходные процессы, суть которых заключается в том, что система просто стремится придти к какому-то равновесному состоянию, которое в конце концов выглядит как состояние покоя. Такой переходный процесс может быть как нарастающим, так и спадающим.
Внешняя сила сначала выводят динамическую систему из состояния равновесия, а затем не препятствует естественному возврату данной системы к ее исходному состоянию. Эта последняя фаза и есть так называемый переходный процесс, которому свойственна определенная длительность. Кроме того процесс выведения системы из равновесия также является переходным процессом с характерной длительностью.
Так или иначе, постоянной времени переходного процесса мы называем его временную характеристику, определяющую время, через которое некоторый параметр данного процесса изменится в «е» раз, то есть увеличится или уменьшится примерно в 2,718 раз по сравнению с состоянием, принятым за исходное.
Рассмотрим для примера электрическую цепь, состоящую из источника постоянного напряжения, конденсатора и резистора. Подобного рода цепь, где резистор включен последовательно с конденсатором, называется интегрирующей RC-цепью.
Если в начальный момент времени подать на такую цепь питание, то есть установить на входе некоторое постоянное напряжение Uвх, то Uвых — напряжение на конденсаторе, начнет по экспоненте нарастать.
Через время t1 напряжение на конденсаторе достигнет 63,2% от напряжения на входе. Так вот, промежуток времени от начального момента до t1 – это и будет постоянная времени данной RC-цепи.
Данную константу цепи называют «тау», она измеряется в секундах, а обозначают ее соответствующей греческой буквой. Численно для RC-цепи она равна R*C, где R выражается в омах, а С — в фарадах.
Интегрирующие RC-цепи применяются в электронике в качестве фильтров нижних частот, когда более высокие частоты необходимо отсечь (подавить), а более низкие — пропустить.
Практически механизм такой фильтрации зиждиться на следующем принципе. Для переменного тока конденсатор выступает как емкостное сопротивление, значение которого обратно пропорционально частоте, то есть чем выше частота — тем меньшим будет реактивное сопротивление конденсатора в омах.
Следовательно, если пропустить через RC-цепь переменный ток, то, как на плечах делителя напряжения, на конденсаторе упадет определенное напряжение, пропорциональное его емкостному сопротивлению на частоте пропускаемого тока.
Если известна частота среза и амплитуда входного переменного сигнала, то для разработчика не составит труда подобрать такие конденсатор и резистор в RC-цепь, чтобы минимальное (граничное) напряжение (для частоты среза — верхней частотной границы) приходилось на конденсатор как на реактивное сопротивление, входящее в состав делителя в совокупности с резистором.
Теперь рассмотрим так называемую дифференцирующую цепь. Это цепь, состоящая из последовательно соединенных резистора и катушки индуктивности, RL-цепь. Ее постоянная времени численно равна L/R, где L – индуктивность катушки в генри, а R – сопротивление резистора в омах.
Если к такой цепи приложить постоянное напряжение от источника, то через время тау напряжение на катушке уменьшится по сравнению с U вх на 63,2%, то есть в полном соответствии со значением постоянной времени для данной электрической цепи.
В цепях переменного тока (переменных сигналов) LR-цепи применяются в качестве фильтров верхних частот, когда низкие частоты необходимо отсечь (подавить), а частоты выше (выше частоты среза — нижней частотной границы)— пропустить. Так вот, индуктивное сопротивление катушки тем больше, чем выше частота.
Как и в случае с рассмотренной выше RC-цепью, здесь используется принцип делителя напряжения. Ток более высокой частоты, пропускаемый через RL-цепь, вызовет большее падение напряжения на индуктивности L, как на индуктивном сопротивлении, входящем в состав делителя напряжения в совокупности с резистором. Задача разработчика — подобрать такие R и L, чтобы минимальное (граничное) напряжение на катушке получалось как раз на частоте среза.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Термин: Постоянная времени RC-цепи
τ – постоянная времени RC-цепи – это временна́я характеристика простой электрической цепи, в которой происходит изменение заряда конденсатора С за счёт его разряда через сопротивление R. Постоянная времени вычисляется как τ=R*C [Ф*Ом], что эквивалентно размерности «секунда» [c].
Как показано на рисунке, постоянная времени τ входит в аналитическую функцию описания процесса изменения напряжения на конденсаторе U(t) при его заряде от источника напряжения через сопротивление R. На рисунке U(0) – это начальное напряжение на конденсаторе (в момент времени t=0), а U(∞) – это напряжение источника напряжения, к которому асимтотически стремится U(t).
Понятие постоянной времени RC-цепи помогает оценить время протекания процесса при анализе эквивалентных электрических схем, содержащих RC-цепи. Заметим только, что понятие постоянной времени не применимо для частного случая заряда-разряда конденсатора постоянным током, где закон изменения напряжения и заряда на конденсаторе имеет линейный характер, а не экспоненциальный.
Постоянные времени RC-цепей (в качестве величин с прозрачным физическим смыслом) участвуют в аналитических решениях дифференциальных уравнений, описывающих не только экспоненциальные процессы в электрических схемах, содержащих RC-цепи (например, пассивные и активные RC-фильтры).
Содержание
Частота среза
или, что то же самое,
где сопротивление в омах и емкость в фарадах дают постоянную времени в секундах или частоту в Гц.
f c в Гц = 159155 / τ в мкс τ в мкс = 159155 / f c в Гц
Другие полезные уравнения:
В более сложных схемах, состоящих из более чем одного резистора и / или конденсатора, метод постоянной времени холостого хода обеспечивает способ аппроксимации частоты среза путем вычисления суммы нескольких постоянных времени RC.
Задержка
Типичная задержка цифрового распространения резистивного провода составляет примерно половину R, умноженного на C; так как R и C пропорциональны длине провода, задержка масштабируется как квадрат длины провода. Заряд распространяется путем диффузии в таком проводе, как объяснил лорд Кельвин в середине девятнадцатого века. До тех пор, пока Хевисайд не обнаружил, что уравнения Максвелла подразумевают распространение волн при наличии достаточной индуктивности в цепи, считалось, что это квадратное соотношение диффузии является фундаментальным ограничением для улучшения телеграфных кабелей дальней связи. Этот старый анализ был заменен в области телеграфа, но остается актуальным для длительных межсоединений на кристалле.
Постоянная времени цепи RC
Электрическая цепь RC
Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Из таблицы интегралов здесь используем преобразование
Постоянная времени τ
Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U, в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:
Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:
Постоянная времени τ = RC
Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R, тогда в цепи пойдёт ток разряда конденсатора.
За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.
За время 3τ конденсатор разрядится до (1/e 3 )*100% ≈ 5% от значения U.
За время 5τ до (1/e 5 )*100% ≈ 1% значения U.
Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.
Замечания и предложения принимаются и приветствуются!
Переходные процессы в электрических цепях
ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ
Сведения из теории
Квазистационарными называются переменные токи, мгновенные значения которых во всех сечениях цепи практически одинаковы, а распространяемые в цепи электромагнитные возмущения имеют скорость, равную скорости света. К мгновенным значениям таких токов применяют закон Ома и вытекающие из него правила Кирхгофа.
Достаточным условием квазистационарности является:

Р и с. 13
С момента t = t1 (положим t1 = 0), начинается процесс заряда конденсатора, описываемый уравнениями рис.14 а, 14 б).
При t = t2 = tu напряжения на конденсаторе и резисторе описываются уравнениями (12), (14) и начинается разряд конденсаторов на сопротивление R (рис.14 а, 14 б). При этом полярность напряжения на резисторе меняется на противоположную в соответствии с направлением тока разряда конденсатора (ф-ла 13). Следует заметить, что форма напряжения Uc, UR существенно зависит от соотношения между постоянной времени цепи tс и длительностью импульса tu = t2 — t1. На рис. 14 представлены следующие соотношения между tс и tu:
UR(t) = UR(tс) = 0,37U0. После окончания действия импульса в цепи возникает переходный процесс, обусловленный рассеянием энергии, запасенной в конденсаторе. В цепи появляется разрядный ток, направление которого противоположно направлению зарядного тока. При
Рассмотрим RC — цепь, изображенную на рис. 16, т. е. с резистивным выходом:
I(t) = dq(t) / dt = C dUc(t) / dt
Напряжение на резисторе
Собрать схему по рис. 21 с конденсатором С = 0,01 мкФ, подобрать сопротивление R, получить на экране осциллографа картину и зарисовать ее.
ПРИМЕР РАБОТЫ ПРОГРАММЫ
Период сигнала Т, с
Длительность импульса tи, с
Значение индуктивности L, Гн
Значение сопротивления R, Ом
Расчитанное значение постоянной времени TL, с
Экспериментальное значение постоянной времени TL, с
















