Что называется внешним фотоэффектом
Фотоэффект и его виды
Фотоэффект и его виды.
Фотоэффект (фотоэлектрический эффект) – явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.
Фотоэффект:
Фотоэффект (фотоэлектрический эффект) – явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.
На основе явления фотоэффекта созданы специальные устройства – фотоэлементы. Фотоэлемент (фотоэлектрический элемент) – электронный прибор, который преобразует энергию фотонов в электрическую энергию.
Выделяют внешний фотоэффект и внутренний фотоэффект, а также вентильный (барьерный) фотоэффект и многофотонный фотоэффект.
Внешний фотоэффект:
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений, например, фотонов. Иными словами, при внешнем фотоэффекте поглощение фотонов сопровождается вылетом электронов за пределы тела. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Внешний фотоэффект наблюдается в твёрдых телах (металлах, полупроводниках и диэлектриках), а также газах (фотоионизация).
Внешний фотоэффект был открыт в 1887 г. Генрихом Рудольфом Герцем. Генрих Герц проводил опыты с цинковым разрядником – разрезанным пополам стержнем с парой металлических шариков на концах разреза. На разрядник подавалось высокое напряжение. При облучении цинкового разрядника ультрафиолетом было замечено, что прохождение искры в разряднике заметно облегчалось.
В 1888-1890 гг. Александр Григорьевич Столетов сделал несколько важных открытий в области фотоэффекта, в том числе вывел первый закон внешнего фотоэффекта.
В 1898 г. Джозеф Джон Томсон экспериментально установил, что поток электрического заряда, выходящий из металла при внешнем фотоэффекте, представляет собой поток открытых им ранее частиц – названных позднее электронами.
В 1900-1902 гг. Филипп Эдуард Антон фон Ленард доказал, что энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.
В 1905 г. внешний фотоэффект был объяснён Альбертом Эйнштейном.
Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Григорьевич Столетов в конце XIX века.
Внутренний фотоэффект:
Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним. Внутренним фотоэффектом называется возрастание электропроводности вещества (наблюдается, как правило, у полупроводников и диэлектриков) и уменьшение его сопротивления под действием электромагнитных излучений, например, в результате облучения вещества видимым, инфракрасным или ультрафиолетовым излучением. Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные, без вылета наружу.
В отличие от внешнего фотоэффекта во внутреннем фотоэффекте электроны, остаются в теле вещества (полупроводника или диэлектрика), но изменяют в нём своё энергетическое состояние и увеличивают концентрацию носителей зарядов в веществе. Так, при поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Концентрация носителей заряда приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика) или возникновению электродвижущей силы.
Впервые явление фотопроводимости (и соответственно явление внутреннего фотоэффекта) у селена открыл Уиллоуби Смит в 1873 г.
На основе внутреннего фотоэффекта работают полупроводниковые фотоэлементы, изготавливаемые из полупроводников. Полупроводники обладают как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы имеют устойчивую структуру и прочно связаны ковалентной связью. Так, например, один электрон в кристалле кремния связан двумя атомами. Чтобы электрону освободиться из атома, ему необходимо сообщить необходимый уровень внутренней энергии. Эта энергия появляется в нем при воздействии на полупроводник, например, видимым, инфракрасным или ультрафиолетовым излучением. Если её (энергии) достаточно, то отдельные электроны отрываются от ядра и становятся свободными. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Место разрыва (свободное место в электронной оболочке атома) именуется дыркой – положительным зарядом, который равен заряду высвободившегося электрона. Если в это время к полупроводнику приложить разность потенциалов (т.е. внешний электрический ток), то в самом полупроводнике появится электрический ток. Представленный электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Вентильный (барьерный) фотоэффект:
Разновидностью внутреннего фотоэффекта является вентильный (барьерный) фотоэффект. Вентильный (барьерный) фотоэффект или фотоэффект в запирающем слое – это явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит). Вентильный (барьерный) фотоэффект – это возникновение электродвижущей силы под действием света в области p-n перехода. Вентильный (барьерный) фотоэффект возникает в неоднородных (по химическому составу или неоднородно легированных примесями) полупроводниках, а также у контакта полупроводник-металл (при отсутствии внешнего электрического поля).
При поглощении полупроводником фотона освобождается дополнительная пара носителей – электрон и дырка, которые движутся в разных направлениях: дырка в сторону полупроводника p-типа, а электрон в сторону полупроводника n-типа. В результате в полупроводнике n-типа образуется избыток электронов, а в полупроводнике p-типа – избыток дырок. Возникает разность потенциалов – фото-ЭДС и электрический ток. По мере увеличения разности потенциалов фототок постепенно возрастает, т.к. все большее число электронов достигает анода.
Эффект прямого преобразования света в электричество впервые был открыт в 1842 г. Александром Эдмоном Беккерелем.
В 1883 г. Чарльз Фриттс впервые создал первую работающую фотоэлектрическую ячейку, используя полупроводниковый материал селен. Фритц покрыл селен очень тонким слоем золота. Полученная фотоэлектрическая ячейка имела КПД преобразования света в электричество всего около 1%, что в сочетании с высокой стоимостью материала препятствовало использованию таких ячеек для энергоснабжения.
Первую солнечную батарею на основе кремния для получения электрического тока создали Кельвин Соулзер Фуллер, Дэрил Чапин и Геральд Пирсон, все трое – специалисты компании Bell Laboratories. О создании первой солнечной батареи было заявлено 25 марта 1948 года.
Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (фотоэлементы), имеющие неоднородные полупроводниковые структуры. Неоднородность структуры фотоэлемента может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов), или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны – энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
КПД производимых в промышленных масштабах полупроводниковых фотоэлементов в настоящее время в среднем составляет 16-19 %, у лучших образцов – до 25 %. В лабораторных условиях уже достигнуты фотоэлементы с КПД порядка 44-45 %.
Максимальные значения эффективности фотоэлементов и модулей, достигнутые в лабораторных условиях
Тип | Коэффициент фотоэлектрического преобразования, % |
Кремниевые | 24,7 |
Si (кристаллический) | |
Si (поликристаллический) | |
Si (тонкопленочная передача) | |
Si (тонкопленочный субмодуль) | 10,4 |
Si (аморфный) | 9,5 |
Si (нанокристаллический) | 10,1 |
На основе арсенида галлия и т.п. | |
GaAs (кристаллический) | 25,1 |
GaAs (тонкопленочный) | 24,5 |
GaAs (поликристаллический) | 18,2 |
InP (кристаллический) | 21,9 |
Тонкие плёнки халькогенидов | |
CIGS (фотоэлемент) | 19,9 |
CIGS (субмодуль) | 16,6 |
CdTe (фотоэлемент) | 16,5 |
Фотохимические | |
На базе органических красителей | 10,4 |
На базе органических красителей (субмодуль) | 7,9 |
Органические | |
Органический полимер | 5,15 |
Многослойные | |
GaInP/GaAs/Ge | 32,0 |
GaInP/GaAs | 30,3 |
GaAs/CIS (тонкопленочный) | 25,8 |
a-Si/mc-Si (тонкий субмодуль) | 11,7 |
Многофотонный фотоэффект:
Многофотонный фотоэффект – это явление, при котором изменение электропроводности, возникновение ЭДС или эмиссия электронов происходит вследствие поглощения одновременно энергии не от одного, а от нескольких фотонов. Такой эффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков).
Наиболее часто понятие многофотонный фотоэффект употребляется по отношению к внешнему фотоэффекту
Что называется внешним фотоэффектом
Фотоэффект и его виды |
Щелкните по ссылке » Квантовые явления в оптике «, чтобы ознакомиться с презентацией раздела в формате PowerPoint. Для возврата к данной странице закройте окно программы PowerPoint. | ||||||||||||||||||
Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны. Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект. Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую. Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов. Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1. Два электрода (катод К из исследуемого материала и анод А, в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром. В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны. Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I, образуемого потоком электронов, от напряжения, – приведена на рис. 2.2. Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение фототока насыщения определяется таким значением напряжения U, при котором все электроны, испускаемые катодом, достигают анода: где n – число электронов, испускаемых катодом в 1 с. Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно, т.е. замерив задерживающее напряжение , можно определить максимальные значения скорости и кинетической энергии фотоэлектрона. При изучении ВАХ разнообразных материалов при разных частотах падающего на катод излучения и разных энергетических освещенностях катода и обобщении полученных данных были установлены три закона внешнего фотоэффекта. Внешний фотоэффект
Всего получено оценок: 119. Всего получено оценок: 119. Явление фотоэффекта, нашедшее широкое применение в современном мире, — это выбивание электронов из атомов вещества при воздействии на них электромагнитного излучения. Существует внутренний и внешний фотоэффект, в статье пойдет речь о внешнем. Фотоэффект как явлениеВ последней трети XIX в. немецкий физик Г. Герц проводил исследования искрового пробоя в газе и обнаружил, что напряжение, необходимое для искрового пробоя, значительно понижается, если искровой промежуток облучать УФ-излучением. Объяснить открытое явление удалось позже, когда был открыт электрон и установили, что электроны входят в состав атомов, а электрический ток является потоком электронов. Под действием облучения электроны покидают вещество. А оказавшись в газовой среде, под действием электрического поля искрового промежутка они разгоняются, выбивают из молекул газа новые электроны. Процесс нарастает лавинообразно, возникает искровой разряд. Явление, при котором электроны покидают атомные оболочки и выходят из вещества, называется внешним фотоэффектом. Существует также внутренний фотоэффект, при котором электроны остаются в веществе. Исследования внешнего фотоэффектаНаиболее глубокие исследования внешнего фотоэффекта провел в концe XIX в. русский физик А. Столетов. Для исследований использовалась следующая установка: Рис. 1. Опыт Столетова. В колбе с вакуумом имеются два электрода. Напряжение между электродами можно менять. Для определения тока между электродами использовался амперметр. При облучении катода УФ-излучением амперметр начинает фиксировать фототок даже при нулевом напряжении между электродами. Это происходит потому, что в результате внешнего фотоэффекта электроны выходят из катода и летят во всех направлениях. Часть из них достигает анода, в цепи возникает ток. Меняя напряжение между электродами, А. Столетов вывел два закона. Необъяснимым стал тот факт, что при некоторой минимальной частоте облучения фотоэффект резко исчезал. Эта минимальная частота была названа «красной границей фотоэффекта». Третий закон Столетова устанавливает существование этой границы, которая специфична для разных веществ. Рис. 2. Законы фотоэффекта Столетова. Уравнение фотоэффектаОбъяснить второй и третий законы Столетова с точки зрения классической электродинамики не представлялось возможным. Для их объяснения в 1905 г. А. Эйнштейн допустил, что свет существует только в виде порций-квантов (фотонов). Фотон может быть излучен или поглощен только целиком. А энергия фотона равна ($h$ — постоянная Планка): Таким образом, уравнение Эйнштейна для внешнего фотоэффекта выглядит следующим образом: Эта формула объяснила второй и третий законы Столетова. Рис. 3. Теория фотоэффекта Эйнштейна. Что мы узнали?Внешний фотоэффект — это выбивание электронов из атомов вещества при облучении их светом, при котором электроны покидают вещество. Три закона фотоэффекта были открыты А. Столетовым, два из них получили объяснение в рамках квантовой теории фотоэффекта А. Эйнштейна. Фотоэффект | ||||||||||||||||||
Принцип неопределённости | ||||||||||||||||||
Введение Математические основы | ||||||||||||||||||
| ||||||||||||||||||
См. также: Портал:Физика |
Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.
Формулировка 1-го закона фотоэффекта: Сила фототока прямо пропорциональна плотности светового потока.
Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.
3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0 ), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.
Содержание
История открытия
В 1839 году Александр Беккерель наблюдал [1] явление фотоэффекта в электролите.
В 1873 году Уиллоуби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.
Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.
В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.
Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
где — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), — кинетическая энергия вылетающего электрона, — частота падающего фотона с энергией , h — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Внешний фотоэффект
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.
Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.
Законы внешнего фотоэффекта
Теория Фаулера
<<\nu >_<\min >> \\ \end
где , , — постоянные коэффициенты, зависящие от свойств облучаемого металла.
Квантовый выход
Важной количественной характеристикой фотоэффекта является квантовый выход Y — число эмитированных электронов в расчёте на один фотон, падающий на поверхность тела. Величина Y определяется свойствами вещества, состоянием его поверхности и энергией фотонов. Квантовый выход фотоэффекта из металлов в видимой и ближней УФ-областях Y 10 эВ.
Внутренний фотоэффект
Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.
Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.
Вентильный фотоэффект
Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).
Фотовольтаический эффект
Ядерный фотоэффект
Современные исследования
См. также
Примечания
Ссылки
Геометрическая оптика • Физическая оптика • Волновая оптика • Квантовая оптика • Нелинейная оптика • Теория испускания света • Теория взаимодействия света с веществом • Спектроскопия • Лазерная оптика • Фотометрия • Физиологическая оптика • Оптоэлектроника • Оптические приборы | |
Смежные направления | Акустооптика • Кристаллооптика |
---|
Общая (физическая) акустика • Геометрическая акустика • Психоакустика • Биоакустика • Электроакустика • Гидроакустика • Ультразвуковая акустика • Квантовая акустика (акустоэлектроника) • Акустическая фонетика (Акустика речи) | |
Прикладная акустика | Архитектурная акустика (Строительная акустика) • Аэроакустика • Музыкальная акустика • Акустика транспорта • Медицинская акустика • Цифровая акустика |
---|---|
Смежные направления | Акустооптика |
Полезное
Смотреть что такое «Фотоэффект» в других словарях:
фотоэффект — фотоэффект … Орфографический словарь-справочник
ФОТОЭФФЕКТ — ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия
ФОТОЭФФЕКТ — испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия
фотоэффект — сущ., кол во синонимов: 2 • фото эффект (1) • эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
фотоэффект — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика
ФОТОЭФФЕКТ — (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия
фотоэффект — а; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь
Фотоэффект — испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия
фотоэффект — (см. фото. + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка