Что называется узлом цепи
Что такое электрическая схема, ветвь, узел, контур.
Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.
Простым языком электрическая схема это упрощенное изображение электрической цепи.
Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.
Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.
В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.
Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.
Ветви присоединённые к одной паре узлов называются параллельными.
Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.
Узел – место соединения трёх и более ветвей.
Точки К и Е не являются узлами.
Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.
Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.
Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.
Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.
Работа и мощность в цепи постоянного тока.
Работа тока— это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.
Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:
По закону сохранения энергии:
работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.
При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.
Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.
По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.
[Q] = 1 Дж
МОЩНОСТЬ ПОСТОЯННОГО ТОКА
— отношение работы тока за время t к этому интервалу времени.
Первый закон Кирхгофа.
Сколько тока втекает в узел, столько из него и вытекает. i2 + i3 = i1 + i4
Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:
Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.
7. Расчет цепи методом эквивалентных структурных преобразований.
Метод эквивалентных структурных преобразований.
В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов.
При последовательном соединении элементов через них протекает один и тот же ток I (рис. 1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи
(1.27)
Для последовательного соединения сопротивлений r1,r2. rn (рис. 1.18) с учетом (1.6) будем иметь
(1.28)
Ток в цепи с последовательным соединением элементов равен:
(1.29)
а напряжение на n-ом элементе равно
(1.30)
Параллельное соединение элементов.
Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис. 1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е.
(1.31)
На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем:
(1.32)
где -эквивалентная проводимость.
Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам:
(1.33)
Мощность всей цепи равна :
, (1.34)
При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются.
Рассмотрим частные случаи параллельного соединения резистивных элементов.
а) параллельное соединение двух элементов
б) параллельное соединение n ветвей с одинаковыми сопротивлениями
(1.36)
Баланс мощностей.
Все расчеты в электрических цепях проверяют балансом мощностей.
Баланс основан на законе сохранения и превращения энергии: сколько энергии выработали источники, столько же ее нагрузки должны потребить. Вместо энергии в балансе можно использовать мощность. Выработанная мощность всеми источниками должна быть равна суммарной мощности, расходуемой в нагрузках.
Баланс мощностей можно сформулировать так: алгебраическая сумма мощностей источников, должна быть равна арифметической сумме мощностей нагрузок. Если направление ЭДС и направление тока ветви не совпадают, то составляющая мощности этого источника в балансе мощностей берется со знаком «минус».
Мощность, отдаваемая источниками ЭДС, равна.
Если в резисторе не происходит химических реакций, то мощность выделяется в форме тепла, согласно известному закону Джоуля.
где:
I — постоянный ток (А), протекающий через резистор;
PП — мощность потерь, измеряемая в ваттах (Вт);
R — сопротивление резистора (Ом).
Равенство выражений мощностей источников и мощностей приемников называется уравнением баланса мощностей.
План составления баланса мощностей
1. Если в цепи есть источники тока, то следует любым методом найти напряжения на зажимах источников тока Uk.
Цепи с источником тока |
2. вычислить мощность источников.
|
3.
где:
N — количество источников тока в цепи;
M — количество источников ЭДС в цепи;
Uk — напряжение на источниках тока Jk;
| — | алгебраическая сумма, здесь положительны те из слагаемых, для которых направления ЭДС Еk и соответствующего тока Ik совпадают, в противном случаи слагаемое отрицательно; | |||
| — | алгебраическая сумма, здесь положительны те из слагаемых, для которых направление напряжения на зажимах источника тока Uk и направление его тока Jk во внешней цепи совпадают, в противном случаи слагаемое отрицательно. |
4. вычислить мощность, расходуемую в приемниках.
|
L | — | количество приемников в цепи; | |||
| — | арифметическая сумма, здесь должны быть учтены как внешние резисторы, так и внутренние сопротивления самих источников. |
6. Получаем равенство.
Мощность трехфазной цепи.
При неравномерной нагрузке фаз активная мощность Р трехфазной системы равна сумме мощностей отдельных ее фаз:
При равномерной нагрузке трехфазной системы активные мощности Рф всех трех фаз равны, поэтому активная мощность трехфазной системы
Активную мощность можно выразить также через линейные ток Iл и напряжение Uл. Учитывая зависимости между фазными и линейными токами и напряжениями для схем «звезда» и «треугольник» при равномерной нагрузке фаз, имеем:
Аналогично могут быть получены формулы для реактивной и полной мощностей при равномерной нагрузке фаз:
Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.
Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.
Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.
Узел цепи (электроника)
Узел может быть сколько угодно протяжённым, поскольку для проводника с достаточно низким сопротивлением потенциал практически одинаков во всех точках проводника. Например, вся земляная шина в электронной схеме — это один узел с нулевым потенциалом.
Ничто не запрещает также считать узлом точку соединения двух проводников, однако под такое определение подпадает вообще любая точка цепи.
Связанные понятия
В физике и химии явлением перколяции (от лат. percōlāre — просачиваться, протекать) называется явление протекания или непротекания жидкостей через пористые материалы, электричества через смесь проводящих и непроводящих частиц и другие подобные процессы. Теория перколяции находит применение в описании разнообразных систем и явлений, в том числе таких, как распространение эпидемий и надежность компьютерных сетей.
Метод вертикального электрического зондирования (ВЭЗ) — метод разведочной геофизики. Относится к электроразведке, входит в группу методов кажущегося сопротивления.
Мультипо́ли (от лат. multum — много и греч. πόλος — полюс) — определённые конфигурации точечных источников (зарядов). Простейшими примерами мультиполя служат точечный заряд — мультиполь нулевого порядка; два противоположных по знаку заряда, равных по абсолютной величине — диполь, или мультиполь 1-го порядка; 4 одинаковых по абсолютной величине заряда, размещённых в вершинах параллелограмма, так что каждая его сторона соединяет заряды противоположного знака (или два одинаковых, но противоположно направленных.
Ветвь и узел электрической цепи
Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. В зависимости от особенностей схемы следует применять тот или иной способ расчета электрической цепи. В данном разделе рассмотрим ключевые понятия, которые в дальнейшем будут необходимы для выбора наиболее оптимального и правильного приема решения задач.
Ветвью называется участок электрической цепи, обтекаемый одним и тем же током. Ветвь образуется одним или несколькими последовательно соединенными элементами цепи.
При обходе по соединенным в ветвях цепям можно получить замкнутый контурэлектрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел встречается в данном контуре не более одного раза. Ниже приведена электрическая схема, на которой отмечено несколько произвольно выбранных контуров.
Всего для данной цепи можно выделить 6 замкнутых контуров.
Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.
Простым языком электрическая схема это упрощенное изображение электрической цепи.
Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.
Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.
В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.
Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.
Ветви присоединённые к одной паре узлов называются параллельными.
Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.
Узел – место соединения трёх и более ветвей.
Узел цепи
Узел может быть сколь угодно протяжённым, поскольку для проводника с достаточно низким сопротивлением потенциал практически одинаков во всех точках проводника. Например, вся земляная шина в электронной схеме — это один узел с нулевым потенциалом.
Ничто не запрещает также считать узлом точку соединения двух проводников, однако под такое определение подпадает вообще любая точка цепи.
Примечания
Смотреть что такое «Узел цепи» в других словарях:
узел цепи — точка разветвления цепи точка ветвления — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы точка разветвления цепиточка ветвления EN branch point … Справочник технического переводчика
узел цепи — grandinės mazgas statusas T sritis radioelektronika atitikmenys: angl. network node vok. Netzknoten, m rus. узел цепи, m pranc. noeud de réseau, m … Radioelektronikos terminų žodynas
Узел цепи (электроника) — У этого термина существуют и другие значения, см. Узел (значения). Узел цепи в электронике точка, в которой соединяются три (или более) проводника электрической цепи. Узел (наряду с контуром) является базовым понятием, необходимым при… … Википедия
узел схемы — узел цепи — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы узел цепи EN point branch … Справочник технического переводчика
Узел (значения) — Узел: Узел соединение и переплетение линейных материалов. «Гордиев узел» крылатая фраза. Содержание 1 Коммуникации 2 Наука и техника … Википедия
узел — 1. УЗЕЛ, узла; м. 1. Затянутая петля на верёвке, канате и т.п.; место, где связаны концы чего л. (верёвки, нитки, платка и т.п.). Большой, тугой, сложный у. Верёвочный у. У. на галстуке. Завязать узлом. Развязать у. Затянуть у. Распутывать узлы… … Энциклопедический словарь
узел (электрической цепи) — узел Место соединения ветвей электрической цепи. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия … Справочник технического переводчика
узел (электрической) цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN network junction … Справочник технического переводчика
узел электрической цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN node of an electric circuit … Справочник технического переводчика