Период колебаний T – интервал времени, в течение которого происходит одно полное колебание.
Частота колебаний ν – число полных колебаний в единицу времени. В системе СИ выражается в герцах (Гц).
Период и частота колебаний связаны соотношением:
Циклическая (или круговая) частота ω = 2πν. Она связана с периодом отношением:
Гармонические колебания – это колебания, при которых колеблющаяся величина изменяется по закону синуса или косинуса. Смещение определяется формулой:
где x 0 – амплитуда, ω – циклическая частота, φ0 – начальная фаза колебания. Дифференциальное уравнение свободных гармонических механических колебаний имеет один и тот же вид для любых колебаний:
где – ускорение тела. Величина ω0 называется собственной частотой свободных колебаний. Ускорение при гармонических колебаниях всегда направлено в сторону, противоположную смещению; максимальное ускорение равно
а период:
а период колебаний:
Вынужденные колебания – колебания, возникающие под действием внешней периодически изменяющейся силы. Частота вынужденных колебаний равна частоте изменения внешней силы.
Это система взаимодействующих тел (минимум два тела), которые способны совершать колебания. Простейшими колебательными системами являются маятники.
Характеристика колебаний
Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.
Циклическая частота характеризует скорость изменения фазы колебаний.
Начальное состояние колебательной системы характеризует начальная фаза
Частота, циклическая частота и период колебаний соотносятся как
Виды колебаний
Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными. Встречаются также автоколебания (вынуждаются автоматически).
Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические, затухающие, нарастающие (а также пилообразные, прямоугольные, сложные).
При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.
Вынужденные колебания. Резонанс
Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.
Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом.
Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.
Примеры резонанса
Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать
Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.
Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.
Колебания — это процессы, которые имеют какую либо степень повторяемости во времени.
Свободные (собственные) колебания — это колебания, которые предоставляют сами себе системы, вызванные первоначальным кратковременным внешним возбуждением.
Колебательная система — это такая система, которая способная производить свободные колебания.
Колебательная система соответствует следующим условиям:
Амплитуда колебаний — это максимальное значение величины (для механических колебаний это смещение), которая совершает колебания.
Период колебаний — это самый маленький отрезок времени, через который система совершает колебания, снова возвращается в исходное состояние, т. е. в начальный момент.
Частота колебаний — это физическая величина, равная числу колебаний, которые совершаются в единицу времени.
Циклическая частота — это характеристика гармонических колебаний, совершаемых за
Фаза колебаний — это аргумент функции, который периодически изменяется.
Затухающие колебания — это собственные колебания, у которых амплитуда уменьшается со временем, что обусловлено потерями энергии колебательной системой.
Коэффициент затухания и логарифмический декремент затухания — это характеристика быстроты уменьшения амплитуды в случае механических колебаний, где энергия убывает за счет действия сил трения и других сил сопротивления.
Декремент затухания — это количественная характеристика быстроты затухания колебаний, которая определяется натуральным логарифмом отношения двух последовательных максимальных отклонений , колеблющейся величины в одну сторону:
Декремент затухания — величина, обратная числу колебаний, по истечении которых амплитуда убывает в: е раз е = 2,71828). Промежуток времени, необходимый для этого, называется временем релаксации.
Дифференциальное уравнение малых затухающих колебаний системы:
Вынужденные колебания — это колебания, которые возникают под действием внешней периодической силы.
Дифференциальное уравнение вынужденных колебаний:
Резонанс — это процесс резкого возрастания амплитуды вынужденных колебаний при приближении циклической частоты , вынуждающей силы к собственной циклической частоте колебательной системы.
Автоколебания — это незатухающие колебания физической системы, которые способны существовать без воздействия на нее внешних сил.
Автоколебательная система — это физическая система, где имеет место существовать автоколебания.
Автоколебательная система состоит из следующих частей:
Обратная связь — это воздействие результатом какого-либо процесса на его протекание.
Обратная связь бывает:
Периодические колебания — это колебания, которые имеют изменяющиеся значения физических величин, но которые повторяются через равные отрезки времени.
Смещение — это физическая величина, которая является характеристикой колебаний, равная отклонению тела от положения равновесия в данный момент времени.
Математический, физический, пружинный маятники.
Математический маятник — это тело малых размеров, подвешенное на тонкой нерастяжимой нити, масса которой ничтожно мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити .
Составляющая силы тяжести при отклонении маятника из положения равновесия на некоторый угол ф , где знак «минус» означает, что касательная составляющая на- правлена в сторону, противоположную отклонению маятника. Второй закон Ньютона для математического маятника запишется: , где x — линейное смещение маятника от положения равно- весия по дуге окружности, l — радиус.
Угловое смещение будет равно
Для малых колебаний математического маятника второй закон Ньютона записывается в виде:
Если математический маятник совершает малые колебания, то он является гармоническим осциллятором. Собственная частота малых колебаний математического маятника:
Период малых колебаний математического маятника определяется:
Физический маятник — это тело, которое является твердым, производящее колебания в поле каких-либо сил относительно точки, которая не является центром масс этого тела, или горизонтальной оси.
Второй закон Ньютона для физического маятника принимает вид:
Собственная частота малых колебаний физического маятника:
Период малых колебаний физического маятника определяется:
Круговая частота свободных колебаний физического маятника определяется выражением:
Центр качания физического маятника — это точка, где необходимо сосредоточить всю массу физического маятника, чтобы его период колебаний оставался постоянным.
Физический маятник обладает следующим замечательным свойством: если физический маятник подвесить за центр качания, то его период колебаний будет постоянным, а прежняя точка подвеса станет новым центром качания.
Пружинный маятник — это колебательная система, которая состоит из груза, подвешенного к абсолютно упругой пружине.
Пружинный маятник совершает гармонические колебания с циклической частотой: , где k — коэффициент жесткости.
Период пружинного маятника определяется:
Уравнение движения пружинного маятника при этом имеет вид:
Смещением называется любое отклонение физической величины от ее значения в положении равновесия.
Максимальное смещение А от положения равновесия называется амплитудой колебаний. Другими словами, амплитуда определяет размах колебаний. В нашем примере размах амплитуды колебаний 2А равен смещению шарика из точки Б в точку В.
Таким образом, в крайних положениях состояние шарика характеризуется следующими параметрами: потенциальная энергия максимальна Еп = Епmax, скорость v = 0, кинетическая энергия Ек= 0.
В промежуточных положениях скорость и энергия также имеют промежуточные значения.
Если бы при движении шарика не возникало потерь энергии вследствие сопротивления среды и внутреннего трения, то колебательное движение продолжалось бы бесконечно долго. В реальных же условиях без дополнительного воздействия внешней силы амплитуда колебаний будет постепенно уменьшаться и, в конце концов, шарик остановится.
На этом примере можно отметить еще одно важное общее свойство в механических и акустических колебаниях – переход кинетической энергии в потенциальную и обратно.
Колебательные процессы подразделяются на периодические и непериодические.
Периодическими называются колебания, повторяющиеся через определенный промежуток времени, непериодическими – когда нет полного повторения процесса изменения.
Рисунок 3 – Графики периодических функций
Рисунок 4 – Графики непериодических функций
Среди периодических колебаний очень важную роль играют гармонические колебания.
Гармоническиминазываются колебания, при которых какая-либо величина изменяется с течением времени по закону синуса или косинуса.
u = Usin(ωt+ φ0), (1)
u = Ucos(ωt+ φ0).
где u – смещение колеблющейся частицы от положения своего равновесия в момент времени t;
U – максимальная амплитуда смещения гармонического колебания. Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).
(ωt + φ0) – фаза гармонического колебания; представляет собой аргумент синуса или косинуса.Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.
φ0 – начальная фаза; характеризует положение точки в начальный момент времени;
ω – циклическая (круговая) частота; равна величине угла поворота, иначе ее называют угловой скоростью. Связь циклической частоты ω с линейной f и периодом Т: если угол поворота φ материальной точки равен 2π, т.е. периоду Т колебаний (исходя из равенства φ = ωt для любого момента времени t) получаем 2π = ωt
ω =, [рад/с] (2)
Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t = 0 смещение u = 0, следовательно, удобнее пользоваться функцией sin, положив φ0 = 0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t = 0 смещение u = U, следовательно, удобнее пользоваться функцией cos и φ0 = 0.
Рисунок 5
Гармонические колебания физического маятника можно зарегистрировать следующим способом. В качестве груза взять небольшой флакон с чернилами, которые могут вытекать через очень маленькое отверстие снизу. Под колеблющимся маятником двигать равномерно по столу бумажную ленту (рисунок 5, а). Полученная на бумаге кривая (рисунок 5, б) называется осциллограммой (лат. oscillum — колебание, греч. graphic — пишу) и представляет собой синусоиду или косинусоиду в зависимости от выбора начального момента времени наблюдения (момента отсчета времени).
Рисунок 6 – Движение точки по окружности с постоянной скоростью
Чтобы установить основные кинематические признаки гармонических колебаний, рассмотрим их математическую модель на примере изменения физических величин, характеризующих движение маленького шарика (материальной точки Мt) по окружности с постоянной угловой скоростью ω (рисунок 6). Начало координат поместим в центре окружности радиуса R. Проследим движение точки Мt‘, являющейся проекцией точки Мt на ось Y. Пусть в начальный момент времени материальная точка находилась в положении М0 и ее радиус-вектор составлял с осью Ох угол φ0.
Через промежуток времени t точка переместилась в положение Мt, а ее радиус-вектор повернулся на угол Δφ = ωt и составляет в данный момент с осью Ох угол
Тогда смещение uу1 точки Мt вдоль оси Y есть
где uу1 = ОМt – амплитуда колебаний точки Мt‘относительно оси X, равная наибольшему отклонению точки Мt в данное время от этой оси.
Значение угла φ для любого момента времени t есть
Отсчет угла φ ведется от оси Х против часовой стрелки. Если бы круговое движение началось из положения φ = φ0 = 0, то формула для смещения записывалась бы в виде:
Также будет выглядеть формула (5), если φ = 2π, что соответствует полному обороту точки Мtв случае, если движение точки по окружности начнется из положения φ = φ0 = 0.
Если рассматривать изменение проекции ихточки Мt на горизонтальную ось X (рисунок 6), то оно описывается выражением
Таким образом, точка Мt совершает гармонические колебания как относительно оси Y, так и относительно оси X.