Что называется разностью двух комплексных чисел

Сложение и вычитание комплексных чисел

Вы будете перенаправлены на Автор24

Операции сложения и вычитания выполняются для чисел, представленных в алгебраической форме.

Другими словами, суммой двух заданных комплексных чисел является комплексное число, действительная и мнимая части которого определяется как сумма соответственно действительных и мнимых частей исходных слагаемых.

Сумму любого количества заданных комплексных чисел можно найти путем суммирования действительных частей и суммирования мнимых частей слагаемых.

Для операции суммы комплексных чисел справедливо следующее правило: (от перестановки слагаемых сумма не меняется).

Сумму двух заданных комплексных чисел можно найти с помощью комплексной плоскости по правилу «параллелограмма» (правило параллелограмма сложения векторов).

Иллюстрация примера сложения комплексных чисел с использованием комплексной плоскости приведена на рис.1-2.

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Для сложения комплексных чисел воспользуемся определением и получим:

Готовые работы на аналогичную тему

Для сложения комплексных чисел воспользуемся определением. Для вычисления модуля комплексного числа воспользуемся формулой:

\[z_ <1>+z_ <2>=(\sqrt <3>+0\cdot i)+(0+\sqrt <5>\cdot i)=(\sqrt <3>+0)+(0+\sqrt <5>)i=\sqrt <3>+\sqrt <5>\cdot i\]

Модуль разности двух заданных комплексных чисел равен расстоянию между точками, которые изображают эти числа на комплексной плоскости:

Для нахождения разности комплексных чисел воспользуемся определением и получим:

Найти модуль разности двух заданных комплексных чисел:

Воспользуемся формулой из примечания 4.

На комплексной плоскости операцию вычитания можно реализовать как вычитание векторов комплексных чисел по правилу параллелограмма (рис. 3), используя следующий алгоритм:

Что называется разностью двух комплексных чисел

На комплексной плоскости операцию вычитания можно реализовать, используя другой алгоритм:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Для построения воспользуемся примечаниями 4 и 6.

Что называется разностью двух комплексных чисел

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 13 11 2021

Источник

Арифметика комплексных чисел

Поскольку комплексные числа – это корректные математические объекты, как и скалярные числа, их можно складывать, вычитать, умножать, делить, возводить в квадрат, инвертировать и т.д., как и любые другие числа.

Некоторые научные калькуляторы запрограммированы на выполнение таких операций непосредственно с двумя или более комплексными числами, но эти операции также можно выполнять «вручную». В данном разделе показано, как выполняются основные операции.

Настоятельно рекомендуется вооружиться научным калькулятором, способным легко выполнять арифметические операции над комплексными числами. Это сделает ваше изучение цепей переменного тока намного более приятным, чем, если бы вы были вынуждены проделывать все вычисления дольше вручную.

Сложение и вычитание комплексных чисел в алгебраической форме

Складывать и вычитать комплексные числа в алгебраической форме очень просто. В случае сложения просто сложите действительные составляющие комплексных чисел, чтобы определить действительную составляющую суммы, и сложите мнимые составляющие комплексных чисел, чтобы определить мнимую составляющую суммы:

Что называется разностью двух комплексных чисел Рисунок 1 – Сложение комплексных чисел в алгебраической форме

При вычитании комплексных чисел в алгебраической форме просто вычтите действительную составляющую второго комплексного числа из действительной составляющей первого, чтобы получить действительную составляющую разности, и вычтите мнимую составляющую второго комплексного числа из мнимой составляющей первого числа, чтобы получить мнимую составляющую разности:

Что называется разностью двух комплексных чисел Рисунок 2 – Вычитание комплексных чисел в алгебраической форме

Умножение и деление комплексных чисел в полярной форме

Для обычного умножения и деления предпочтительнее использовать полярную форму записи комплексных чисел. При умножении комплексных чисел в полярной форме просто умножьте друг на друга амплитуды комплексных чисел, чтобы определить амплитуду произведения, и сложите углы комплексных чисел, чтобы определить угол произведения:

Что называется разностью двух комплексных чисел Рисунок 3 – Умножение комплексных чисел в полярной форме

Делить комплексные числа в полярной форме также легко: просто разделите амплитуду первого комплексного числа на амплитуду второго комплексного числа, чтобы получить амплитуду частного, и вычтите угол второго комплексного числа из угла первого комплексного числа, чтобы получить угол частного:

Что называется разностью двух комплексных чисел Рисунок 4 – Деление комплексных чисел в полярной форме

Чтобы получить обратное значение, или «инвертировать» (1/x) комплексное число, просто разделите число (в полярной форме) на скалярное значение 1, которое является не чем иным, как комплексным числом без мнимой составляющей (угол = 0):

Что называется разностью двух комплексных чисел Рисунок 5 – Получение обратного значения, или «инвертирования» (1/x), комплексного числа

Это основные операции, которые вам необходимо знать, чтобы манипулировать комплексными числами при анализе цепей переменного тока. Однако операции с комплексными числами никоим образом не ограничиваются только сложением, вычитанием, умножением, делением и инвертированием.

Практически любая арифметическая операция, которая может быть выполнена со скалярными числами, может быть применена и к комплексным числам, включая возведение в степень, извлечение корня, решение систем уравнений с комплексными коэффициентами и даже тригонометрические функции (хотя это включает в себя совершенно новую часть тригонометрии, называемую гиперболическими функциями, что выходит за рамки данного обсуждения).

Если вы знакомы с основными арифметическими операциями сложения, вычитания, умножения, деления и инвертирования, у вас не будет проблем с анализом цепей переменного тока.

Источник

Что такое комплексные числа

Первый урок по комплексным числам. Сегодня мы разберём:

Если же вас интересует тригонометрическая форма записи комплексного числа, либо извлечение корней из комплексных чисел — этим темам посвящены отдельные уроки.

Сегодня — лишь самое главное. Но не самое простое.:)

0. Краткая вводная

Когда-то нам хватало натуральных чисел:

Всё было прекрасно: «У тебя 5 бананов, у меня ещё 3 — итого у нас 5 + 3 = 8 бананов». Сумма двух натуральных чисел всегда даёт новое натуральное число (говорят, что операция сложения замкнута на множестве натуральных чисел).

Но вот на сцену выходит вычитание — и натуральных чисел стало недостаточно. Например разность 3 − 5 = −2 уже не будет натуральным. Так появились целые числа (натуральные, им противоположные и ноль):

Дальше к делу подключились операции умножения и деления. Да, произведение двух целых чисел всё ещё целое, но вот деление приводит к образованию дробей. Например, 1 : 2 или 5 : 4 уже нельзя записать целым числом. Так появилось множество рациональных чисел или множество дробей:

Это был настоящий триумф для древней математики, и в тот момент казалось, что ничего больше уже изобрести нельзя. Да и зачем?

Проблема пришла откуда не ждали. В какой-то момент классическое умножение «разрослось» до возведения в степень:

Тут-то и выяснилось, что возведение рационального числа в натуральную степень всё ещё будет рациональным числом. Но вот обратная операция — извлечение корня — выносит нас за пределы рациональных чисел:

\[\sqrt<2>=1,41421. \notin \mathbb\]

Так появилось множество действительных чисел — множество бесконечных десятичных дробей, которые могут быть периодическими (и тогда это обычное рациональное число) и непериодическими (такие числа называют иррациональными, и их неизмеримо больше).

Казалось бы: ну вот теперь точно всё! Что ещё нужно для счастья? Проблема в том, что на множестве действительных чисел нельзя извлечь даже самый простой квадратный корень из отрицательного числа:

Однако законы физики (особенно электродинамика и вообще всё, где есть слово «динамика») как бы намекали, что множество содержательных процессов протекает там, где привычные корни не извлекаются. А значит, следует расширить множество действительных чисел так, чтобы такие корни всё же извлекать.

И тут открылись врата в Ад.

1. Комплексная единица

Начнём с ключевого определения.

Однако в остальном это такое же число, как и все остальные. Комплексные единицы можно складывать, умножать, их можно комбинировать с «нормальными» числами:

2. Стандартная форма записи комплексных чисел

А теперь всё по-взрослому.

Определение. Комплексное число — это любое число вида

\[\begin & z=5+3i \\ & \operatorname\left( z \right)=5 \\ & \operatorname\left( z \right)=3 \\ \end\]

\[\begin & 5=5+0\cdot i \\ & x=x+0\cdot i\left( \forall x\in \mathbb \right) \\ \end\]

И напротив: существуют «чисто мнимые» числа, у которых вообще нет действительной части. Та же комплексная единица, например:

\[\begin i &=0+1\cdot i \\ 35i &=0+35\cdot i \\ \end\]

Таким образом, действительные числа являются частным случаем комплексных. Подобно тому как рациональные числа являются частным случаем действительных (в конце концов, рациональные числа — те же десятичные дроби, но с дополнительным условием: они периодические).

2.1. Равенство комплексных чисел

В самом деле, пусть некоторое число записано двумя способами:

Соберём все действительные слагаемые слева, а мнимые — справа:

Слева мы видим действительное число. Значит, справа тоже должно стоять действительное число. Единственная ситуация, в которой это возможно:

Получается, что справа от знака равенства стоит ноль. Следовательно, слева тоже ноль:

Следовательно, исходные записи совпадают.

Поэтому имеет смысл следующее определение.

Определение. Два комплексных числа равны друг другу тогда и только тогда, когда равны их действительные части, а также равны их мнимые части:

Если хотя бы одна из частей не равна, то и сами числа не равны.

Поскольку от перестановки слагаемых сумма не меняется (сложение чисел — настолько суровая операция, что какие-то там «комплексные единицы» никак не нарушают его коммутативности), мы можем записать:

А вот перестановка мнимой и действительной части (если эти части разные) немедленно ведёт к нарушению равенства:

К координатной плоскости мы ещё вернёмся. А пока определим правила сложения и вычитания комплексных чисел.

3. Сложение и вычитание комплексных чисел

Выше мы проводили аналогию между комплексными числами и многочленами. Идём по этому пути дальше и вспоминаем, что многочлены можно складывать, группируя слагаемые и приводя подобные:

Точно так же можно определить и сложение (да и вычитание) двух комплексных чисел. Всё просто:

Другими словами, при сложении комплексных чисел отдельно складываются их действительные части и отдельно — мнимые. То же самое для вычитания.

Не нужно учить эти формулы. Дальше будут формулы умножения и деления — они ещё сложнее. Нужно понять ключевую идею: мы работаем с комплексными числами точно так же, как с многочленами. С небольшим дополнением: все степени комплексной единицы выше первой «сжигаются» прямо по определению самой единицы:

Небольшое замечание. В отличие от математики 5—6 классов, в серьёзной «взрослой» алгебре нет такого понятия как «вычитание». Зато есть понятие противоположного элемента и алгебраической суммы:

Всё это в полной мере относится и к комплексным числам. Там тоже есть противоположные:

Есть ноль (нейтральный элемент по сложению):

\[\begin 0 & =0+0\cdot i \\ z & =a+bi \\ z+0 & =\left( a+0 \right)+\left( b+0 \right)\cdot i= \\ & =a+bi=z \end\]

В общем, множество комплексных чисел — это абсолютно «нормальное» множество с понятной операцией сложения. Буквально через пару минут мы определим и умножение, но сначала давайте всё-таки запишем определение самого множества комплексных чисел.

Записывается это так:

Не пугайтесь, когда увидите подобную запись где-нибудь в учебнике алгебры. По сути, это краткая запись всего того, о чём мы говорили выше. Ничего нового мы здесь не узнали.

А вот что действительно представляет интерес — сейчас узнаем.:)

4. Геометрическая интерпретация комплексных чисел

Такие упорядоченные пары удобно рассматривать как координаты точек. По горизонтали (ось абсцисс) мы будем отмечать действительную часть числа, а по вертикали (ось ординат) — мнимую.

Определение. Комплексная плоскость — декартова система координат, где по горизонтали отмечается действительная часть комплексного числа, а по вертикали — мнимая.

Рассмотрим несколько примеров. Отметим на комплексной плоскости числа:

Что называется разностью двух комплексных чисел

4.1. Ещё раз о сложении и вычитании

Такое представление чисел — в виде точек на комплексной плоскости — называется геометрической интерпретацией. Числа в таком виде удобно складывать и вычитать. По сути, всё сводится к сложению обычных векторов.

Допустим, мы хотим сложить два числа:

Отметим эти числа на комплексной плоскости, построим векторы из начала координат с концами в отмеченных точках, а затем просто сложим эти векторы (по правилу треугольника или параллелограмма — как пожелаете):

Что называется разностью двух комплексных чисел

Координаты новой точки: (6; 2). Следовательно, сумма равна:

Аналогичный результат можно получить и алгебраически:

Как видим, алгебраические выкладки заняли гораздо меньше времени и места. Уже хотя бы потому что не потребовалось чертить систему координат.:)

Зачем же тогда нужна комплексная плоскость и геометрическая интерпретация? Всё встанет на свои места буквально через пару уроков, когда мы рассмотрим тригонометрическую форму записи комплексных чисел, а также будем извлекать из этих чисел корни.

А чтобы подготовиться к этим урокам, рассмотрим ещё два ключевых определения.

5. Комплексно-сопряжённые и модуль числа

Для начала вспомним школьную алгебру. Работа с многочленами, 7-й класс:

называется разностью квадратов и является одной из формул сокращённого умножения.

В математических классах с помощью сопряжённых искали обратные числа, чтобы затем решать сложные показательные и логарифмические уравнения:

Теперь настало время комплексных чисел. В них тоже можно ввести понятие сопряжённых.

5.1. Комплексно-сопряжённые

Комплексно-сопряжённые числа отмечаются чертой сверху.

Рассмотрим несколько примеров:

Видим, что комплексно-сопряжённое к «чисто мнимому» числу есть число, ему противоположное. А комплексно-сопряжённое к действительному числу есть само это число.

Зачем нужны комплексно-сопряжённые? Вспомним всё ту же формулу разности квадратов:

Итак, произведение числа на комплексно-сопряжённое даёт сумму квадратов действительной и мнимой части. Это ключевое свойство комплексно-сопряжённых, и оно позволяет нам рассмотреть следующее определение.

5.2. Модуль комплексного числа

Снова вспомним школьную алгебру. Модуль действительного числа определяют так:

Ключевая идея: модуль числа — это всегда неотрицательная величина, равная расстоянию от точки, соответствующей этому числу, до начала отсчёта. Но всё это происходит на числовой прямой. На комплексной плоскости к делу подключается теорема Пифагора.

Вновь обратимся к геометрической интерпретации:

Что называется разностью двух комплексных чисел

\[b=0\Rightarrow \left| z \right|=\sqrt<<^<2>>>\]

Получается, что на множестве комплексных чисел нельзя ввести привычные нам понятия «больше» или «меньше». Поскольку каждое число характеризуется двумя независимыми параметрами (действительной и мнимой частью), нет универсальной меры, нет отношения порядка.

Можно считать это фундаментальным законом природы. Когда мы держим в голове больше одного параметра, нет больше универсального критерия успеха:

Оценка одного и того же события будет меняться в зависимости от настроения и наших предпочтений.

Модуль числа нам пригодится в следующем уроке. А вот комплексно-сопряжённые мы будем применять уже сейчас.

6. Умножение и деление комплексных чисел

Комплексные числа можно не только складывать и вычитать, но даже умножать и делить друг на друга.

6.1. Умножение

С умножением ничего особенного.

\[\begin <_<1>>\cdot <_<2>> & =\left( a+bi \right)\left( c+di \right)= \\ & =ac+bc\cdot i+ad\cdot i+bd\cdot <^<2>>= \\ & =\left( ac-bd \right)+\left( ad+bc \right)\cdot i\end\]

Как видим, произведение комплексных чисел вновь даёт комплексное число.

Как и в случае со сложением, не нужно учить эти формулы наизусть. Лучше просто потренироваться и понять сам механизм:

Достаточно решить 10—15 таких примеров — и никакие специальные формулы и определения вам больше не понадобятся. То же самое и с делением.

6.2. Деление

Финальный бросок — попробуем разделить одно комплексное число на другое. Разумеется, делитель не должен быть нулём, иначе частное не определено.

Частное комплексных чисел вновь будет комплексным числом.

Саму формулу не нужно запоминать. Достаточно лишь отметить для себя, что мы умножили числитель и знаменатель дроби на комплексно-сопряжённое к знаменателю. Само деление можно выполнять напролом:

Тем не менее, даже после основательной тренировки умножение и особенно деление комплексных чисел остаётся трудоёмкой операцией, где можно допустить множество ошибок. Поэтому для таких операций (а также для кое-чего гораздо более серьёзного) математики придумали другую форму записи комплексных чисел — тригонометрическую. С ней мы и познакомимся на следующем уроке.:)

Источник

Комплексные числа

Что называется разностью двух комплексных чиселАлгебраическая форма записи комплексных чисел
Что называется разностью двух комплексных чиселСложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Что называется разностью двух комплексных чиселКомплексно сопряженные числа
Что называется разностью двух комплексных чиселМодуль комплексного числа
Что называется разностью двух комплексных чиселДеление комплексных чисел, записанных в алгебраической форме
Что называется разностью двух комплексных чиселИзображение комплексных чисел радиус-векторами на координатной плоскости
Что называется разностью двух комплексных чиселАргумент комплексного числа
Что называется разностью двух комплексных чиселТригонометрическая форма записи комплексного числа
Что называется разностью двух комплексных чиселФормула Эйлера. Экспоненциальная форма записи комплексного числа
Что называется разностью двух комплексных чиселУмножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Что называется разностью двух комплексных чиселИзвлечение корня натуральной степени из комплексного числа

Что называется разностью двух комплексных чисел

Алгебраическая форма записи комплексных чисел

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Комплексно сопряженные числа

Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

Что называется разностью двух комплексных чисел

Для произвольного комплексного числа z справедливо равенство:

Что называется разностью двух комплексных чисел

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

Что называется разностью двух комплексных чисел

Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

Что называется разностью двух комплексных чисел

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

Что называется разностью двух комплексных чисел

Считается, что комплексное число нуль аргумента не имеет.

Что называется разностью двух комплексных чисел

Тогда оказывается справедливым равенство:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел(3)
Что называется разностью двух комплексных чисел(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Таблица 1. – Формулы для определения аргумента числа z = x + i y

y z

Расположение
числа z
Знаки x и yГлавное значение аргументаАргументПримеры
Положительная
вещественная
полуось
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Положительная
мнимая
полуось
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Второй
квадрант
Что называется разностью двух комплексных чиселЧто называется разностью двух комплексных чиселЧто называется разностью двух комплексных чисел
Отрицательная
вещественная
полуось
Положительная
вещественная
полуось
Знаки x и y
Главное
значение
аргумента
0
Аргументφ = 2kπ
ПримерыЧто называется разностью двух комплексных чисел
Главное
значение
аргументаЧто называется разностью двух комплексных чиселАргументЧто называется разностью двух комплексных чиселПримерыЧто называется разностью двух комплексных чиселГлавное
значение
аргументаЧто называется разностью двух комплексных чиселАргументЧто называется разностью двух комплексных чиселПримерыЧто называется разностью двух комплексных чиселГлавное
значение
аргументаЧто называется разностью двух комплексных чиселАргументЧто называется разностью двух комплексных чиселПримерыЧто называется разностью двух комплексных чисел

x zТретий
квадрантЗнаки x и y

x zОтрицательная
мнимая
полуосьЗнаки x и y

y zЧетвёртый
квадрантЗнаки x и y

Положительная вещественная полуось

Главное значение аргумента:

Что называется разностью двух комплексных чисел

Расположение числа z :

Главное значение аргумента:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Расположение числа z :

Положительная мнимая полуось

Главное значение аргумента:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Расположение числа z :

Главное значение аргумента:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Расположение числа z :

Отрицательная вещественная полуось

Отрицательная мнимая полуось

x z = x + i y может быть записано в виде

Формула Эйлера. Экспоненциальная форма записи комплексного числа

В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :

Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде

Из формулы (7) вытекают, в частности, следующие равенства:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

а из формул (4) и (6) следует, что модуль комплексного числа

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

Действительно, умножение и деление двух произвольных комплексных чисел Что называется разностью двух комплексных чисели Что называется разностью двух комплексных чиселзаписанных в экспоненциальной форме, осуществляется по формулам

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле

Что называется разностью двух комплексных чисел

Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Извлечение корня натуральной степени из комплексного числа

Пусть Что называется разностью двух комплексных чисел— произвольное комплексное число, отличное от нуля.

Для того, чтобы решить уравнение (8), перепишем его в виде

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

следствием которых являются равенства

Что называется разностью двух комплексных чисел(9)

Из формул (9) вытекает, что уравнение (8) имеет n различных корней

Что называется разностью двух комплексных чисел(10)

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

то по формуле (10) получаем:

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Что называется разностью двух комплексных чисел

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *