Что называется проводниками электрического тока
Проводник (электрический проводник)
Что такое проводник?
Проводник — это вещество или материал, которое отлично проводит электрический ток.
Как вы все знаете, любое вещество состоит из атомов. Атомы в свою очередь состоят из электронов и ядер. (Подробнее про строение атома).
Давайте для понимания рассмотрим вот такую картинку. Предположим, что пастух — это ядро, а овцы вокруг него — это электроны.
Те овцы, которые находятся рядом с пастухом, не могут от него просто так взять и убежать, так как он присматривает за ними. Иначе останется без мяса и шерсти к осени. Но вот те овцы, которые находятся поодаль от пастуха, имеют все шансы от него убежать.
То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру.
В результате, такие электроны могут «оторваться» от ядра и начать самостоятельное путешествие по веществу. Такие электроны называются свободными электронами.
Сопротивление проводника
Удельное сопротивление
И вот мы плавно переходим к другому вопросу, что такое сопротивление проводника? Как я уже говорил выше, чем больше свободных электронов в веществе, тем лучше такое вещество проводит электрический ток. Следовательно, сопротивление проводника зависит от того, сколько свободных электронов содержит такой проводник. Поэтому, в физике есть такое понятие, как удельное сопротивление вещества.
Еще раз. Если в каком-либо веществе полно свободных электронов, то такое вещество будет хорошо проводить электрический ток. Если электронов еще меньше, то такое вещество будет плохо проводить электрический ток. А если свободных электронов почти нет, то такое вещество совсем не будет проводить ток. Поэтому, удельное сопротивление вещества показывает способность этого вещества препятствовать электрическому току, проходящему через него.
Удельное сопротивление выражается в единицах Ом × м.
Формула удельного сопротивления проводника
ρ — это удельное сопротивление, Ом × м
R — сопротивление проводника, Ом
S — площадь поперечного сечения, м 2
l — длина проводника, м
Площадь поперечного сечения проводника — это что-то типа этого:
площадь поперечного сечения проводника
Формула сопротивления проводника
Итак, мы теперь знаем такую физическую величину, как удельное сопротивление. Теперь мы с легкостью можем найти сопротивление проводника.
ρ — это удельное сопротивление, Ом × м
R — сопротивление проводника, Ом
S — площадь поперечного сечения, м 2
l — длина проводника, м
Длина проводника
Оказывается, эта задачка решается очень просто. Достаточно вспомнить формулу выше.
Отсюда получаем, что
Удельное сопротивление меди можно узнать из таблицы. Оно равняется 0,017 Ом × мм 2 /м.
Проводники на печатных платах
Как вы знаете, все схемы состоят из проводов или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье «самый простой усилитель звука«, я с помощью проводов соединял различные радиоэлементы, и у меня получилась схема, которая усиливала звуковые частоты.
Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают «проводки», которые уже называются «печатными дорожками».
В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология).
На другой стороне печатной платы уже располагаются радиоэлементы
Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому, в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.
Промышленные печатные платы уже делают многослойными. Они состоят из слоев, как торт из коржей:
Бум SMD технологий вызвал в свою очередь нужду в многослойных печатных платах.
Сверхпроводимость
Также в природе существует и такой эффект, как сверхпроводимость. Сверхпроводимость — это когда некоторые материалы и их сплавы вообще не обладают сопротивлением. То есть их сопротивление очень и очень близко к нулю. Но, спешу вас разочаровать, в простых условиях это получить невозможно, так как это достигается только при критических температурах.
Если желаете больше узнать про материалы, которые используются в электронике и электротехнике, скачайте эту книгу.
Проводники, изоляторы и полупроводники
Электроны атомов, как правило, расположены на внешних или внутренних орбитах. Те электроны, что расположены на внутренних орбитах, относительно прочно связываются с ядром атома. Валентные электроны, т.е. те, которые находятся на внешних орбитах, могут отрываться от атома и находиться в «свободном» состоянии до тех пор, пока не присоединятся к новому атому. Атом, у которого отсутствует какое-либо количество электронов называется ионом с положительным зарядом. А вот атом, к которому присоединились электроны, называется ионом с отрицательным зарядом.
Процесс формирования ионов называется — ионизацией.
Количество «свободных» ионов или электронов, т.е. частиц, переносящих заряд, в единице объема вещества называют концентрацией носителей заряда.
Электрический ток — это упорядоченное движение положительно и отрицательно заряженных частиц.
Электропроводность — это способность вещества, под действием электрического поля, проводить через себя электрический ток.
Чем выше концентрация носителей заряда в веществе, тем больше его электропроводность. В зависимости от способности проводить электрический ток, вещества разделяют на 3 группы: проводники, полупроводники и диэлектрики.
Проводники электрического тока
Проводники — это вещества с высокой электропроводностью. Проводников бывает 2 типа: с электронной проводимостью и ионной проводимостью. К электронной проводимости относятся металлы и их сплавы. В металлах электрический ток создается перемещением электронов. Проходящий через такие проводники ток никак не сказывается на материале и не изменяет его химическую составляющую.
Высокий уровень электропроводности металлов обусловлен тем, что в них много «свободных» электронов, находящихся в состоянии беспорядочного движения и заполняющие объём проводника словно газ. При таком активном движении электроны сталкиваются с ионами неподвижной кристаллической решётки, состоящей из атомов вещества. В следствии чего электроны изменяют направление движения, скорость и свою кинетическую энергию.
Если в проводнике 1-го типа есть электрическое поле, то на заряды проводника действуют силы этого поля, упорядочивая их движение. Свободные электроны двигаются не в хаотическом порядке, а в одном направлении противоположно направлению поля (от минусовой клеммы к плюсовой). Данное упорядоченное движение свободных носителей заряда под действием электрического поля является — электрическим током (проводимости).
Проводники 2-го типа представляют собой растворы или расплавы солей, кислот, щелочей и т. п. в которых не завися от прохождения тока наблюдается электролитическая диссоциация.
Электролитическая диссоциация — это процесс распада нейтральных молекул на отрицательные и положительные ионы.
Положительные ионами выступают водород и ионы металлов. Отрицательные — гидроксильная группа и кислотные остатки.
Данные растворы или расплавы состоящие из ионов, частично или полностью, называются электролитами. Без воздействия внешнее электрическое поля, молекулы и ионы такого проводника будут находиться в состоянии хаотического движения.
При возникновении в таком проводнике электрического поля, движение ионов приобретает направленное упорядоченное движение, т. е. через проводник протекает ток (проводимости). Положительные ионы двигаются по направлению поля, а отрицательные против.
Полупроводники
Полупроводники — это вещества, электропроводность которых зависит от температуры, освещенности, электрических полей и примесей. К таким материалам относят: кремний, теллур, германий, селен, соединения металлов с серой и окислы металлов. Полупроводники отличаются еще и тем, что кроме электронной проводимости имеют и дырочную электропроводность. Дырочная электропроводность вызывается движением «дырок» из-за влияния электрического поля. «Дырки» — это свободные места в атомах, которые не заняты валентными электронами. Это подобно тому, что положительно заряженные частицы перемещаются так же, как и заряды, равные зарядам электронов. На сегодняшний день, использование полупроводников широко распространено в разных устройствах и приборах, например, в фоторезисторах и полупроводниковых диодах.
Электрические диэлектрики
Диэлектрики — это те вещества, в которых при нормальных условиях очень малое количество свободных электрически заряженных частниц. В следствии чего они обладают низкой электропроводностью. К диэлектрикам относятся газы, минеральные масла, лаки и твердые материалы (кроме металлов). Однако, если на диэлектрик будет действовать высокая температура или сильное электрическое поле, то начнется расщепление молекул на ионы, которые потеряют вследствие этого воздействия свои изолирующие свойства.
Проводники, диэлектрики и поток электронов
Электроны атомов разных типов имеют разную степень свободы передвижения. В некоторых типах материалов, таких как металлы, внешние электроны в атомах настолько слабо связаны, что они хаотично перемещаются в пространстве между атомами этого материала не более чем под воздействием тепловой энергии комнатной температуры. Поскольку эти практически несвязанные электроны могут свободно покидать свои атомы и плавать в пространстве между соседними атомами, их часто называют свободными электронами.
Проводники и диэлектрики
В других типах материалов, таких как стекло, электроны атомов имеют очень маленькую свободу передвижения. Хотя внешние силы, такие как физическое трение, могут заставить некоторые из этих электронов покинуть свои атомы и перейти к атомам другого материала, они не так легко перемещаются между атомами внутри самого материала.
Эта относительная подвижность электронов в материале известна как электрическая проводимость (электропроводность). Электропроводность определяется типами атомов в материале (количество протонов в ядре каждого атома определяет его химическую идентичность) и тем, как атомы связаны друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками, а материалы с низкой подвижностью электронов (мало или совсем нет свободных электронов) называются диэлектриками. Ниже приведено несколько распространенных примеров проводников и диэлектриков:
Следует понимать, что не все проводящие материалы имеют одинаковый уровень проводимости, и не все диэлектрики одинаково устойчивы к движению электронов. Электропроводность аналогична прозрачности некоторых материалов для света: материалы, которые легко «проводят» свет, называются «прозрачными», а те, которые этого не делают, – «непрозрачными». Однако не все прозрачные материалы одинаково пропускают свет. Оконное стекло лучше, чем большинство пластиков, и, конечно, лучше, чем «прозрачное» стекловолокно. Так же и с электрическими проводниками, одни лучше других.
Например, серебро является лучшим проводником в списке «проводников», предлагая более легкий проход для электронов, чем любой другой упомянутый материал. Грязная вода и бетон также считаются проводниками, но эти материалы обладают значительно меньшей проводимостью, чем любой металл.
Также следует понимать, что некоторые материалы в зависимости от условий изменяют свои электрические свойства. Стекло, например, является очень хорошим диэлектриком при комнатной температуре, но становится проводником при нагревании до очень высокой температуры. Такие газы, как воздух, обычно изолирующие материалы, также становятся проводящими при нагревании до очень высоких температур. Большинство металлов при нагревании становятся худшими проводниками, а при охлаждении – лучшими. Многие проводящие материалы становятся идеально проводящими (это называется сверхпроводимостью) при чрезвычайно низких температурах.
Поток электронов / электрический ток
Хотя нормальное движение «свободных» электронов в проводнике является случайным, без определенного направления или скорости, электроны могут двигаться через проводящий материал и согласованным образом. Это движение электронов в заданном направлении мы называем электричеством или электрическим током. Точнее, это можно назвать динамическим электричеством в противоположность статическому электричеству, которое представляет собой неподвижное накопление электрического заряда. Подобно воде, протекающей через пустоту трубы, электроны могут перемещаться в пустом пространстве внутри и между атомами проводника. На наш взгляд проводник может показаться твердым, но любой материал, состоящий из атомов, по большей части представляет собой пустое пространство! Аналогия с потоком жидкости настолько уместна, что движение электронов через проводник часто называют «потоком».
Здесь можно сделать примечательное наблюдение. Поскольку каждый электрон планомерно движется через проводник, он толкает электрон впереди, и поэтому все электроны движутся вместе как группа. Начало и остановка потока электронов по всей длине проводящего пути происходит практически мгновенно от одного конца проводника до другого, даже если движение каждого электрона может быть очень медленным. Примерная аналогия – трубка, полностью заполненная шариками:
Рисунок 1 – Трубка с шариками, как аналогия потока электронов
Трубка наполнена шариками, так же как проводник полон свободных электронов, готовых к перемещению под действием внешнего воздействия. Если один шарик вставляется в эту полную трубку с левой стороны, другой шарик немедленно попытается выйти из трубки справа. Несмотря на то, что каждый шарик прошел лишь небольшое расстояние, передача движения через трубку происходит практически мгновенно от левого конца к правому, независимо от длины трубки. С электричеством общий эффект от одного конца проводника до другого происходит со скоростью света: быстрые 300 000 километров (
186 000 миль) в секунду. Однако каждый отдельный электрон движется через проводник гораздо медленнее.
Поток электронов через провод
Если мы хотим, чтобы электроны текли в определенном направлении в определенное место, мы должны обеспечить им правильный путь, точно так же, как водопроводчик должен установить трубопровод, чтобы вода текла туда, куда он хочет. Чтобы облегчить это, изготавливаются провода самых разных размеров из металлов с высокой проводимостью, таких как медь или алюминий.
Помните, что электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала. Это означает, что электрический ток может быть только там, где существует непрерывный путь из проводящего материала, обеспечивающий канал для прохождения электронов. В аналогии с трубкой, шарики могут втекать в левую сторону трубки (и, следовательно, через трубку) тогда и только тогда, когда трубка открыта с правой стороны для вытекания шариков. Если трубка заблокирована с правой стороны, шарики будут просто «накапливаться» внутри трубки, и «потока» шариков не будет. То же самое верно и для электрического тока: непрерывный поток электронов требует наличия непрерывного пути, разрешающего этот поток. Давайте посмотрим на рисунок, чтобы проиллюстрировать, как это работает:
Тонкая сплошная линия (показанная выше) является условным обозначением непрерывного отрезка провода. Поскольку провод сделан из проводящего материала, такого как медь, составляющие его атомы имеют много свободных электронов, которые могут легко перемещаться по проводу. Однако в этом проводе никогда не будет непрерывного или равномерного потока электронов, если им не будет откуда взяться и куда идти. Давайте добавим гипотетические «источник» и «пункт назначения» электронов:
Рисунок 3 – Источник и пункт назначения электронов
Теперь, когда источник электронов заталкивает новые электроны в провод слева, может возникать поток электронов через провод (на что указывают стрелки, указывающие слева направо). Однако поток будет прерван, если токопроводящий путь, образованный проводом, будет нарушен:
Рисунок 4 – Нарушение потока электронов через провод
Электрическая непрерывность
Поскольку воздух является изолирующим материалом, а два куска провода разделяет воздушный зазор, некогда непрерывный путь был разорван, и электроны теперь не могут течь от источника к пункту назначения. Это похоже на разрезание водопроводной трубы на две части и закрытие ее концов в месте разрыва: вода не может течь, если нет выхода из трубы. С точки зрения электричества, у нас было состояние электрической непрерывности, когда провод был целым, а теперь эта непрерывность нарушаена из-за того, что провод разрезан и разделен.
Если бы мы возьмем другой кусок провода, ведущего к пункту назначения, и просто создадим физический контакт с проводом, ведущим к источнику, у нас снова будет непрерывный путь для движения электронов. Две точки на схеме обозначают физический контакт (металл-металл) между кусочками проводов:
Рисунок 5 – Соединение металла с металлом
Теперь у нас снова есть непрерывность от источника до нового созданного соединения, вниз, вправо и вверх до пункта назначения. Это аналогично установке тройника в одну из закрытых труб и направлению воды через новый отрезок трубы к месту назначения. Обратите внимание на то, что через нарушенный отрезок провода с правой стороны не проходят электроны, потому что он больше не является частью полного пути от источника к пункту назначения.
Интересно отметить, что из-за этого электрического тока внутри проводов не происходит «износа», в отличие от водопроводных труб, которые в конечном итоге подвергаются коррозии и изнашиваются из-за продолжительных потоков. Однако при движении электроны сталкиваются с некоторым трением, и это трение может генерировать в проводнике тепло. Эту тему мы рассмотрим более подробно позже.
Проводники электрического тока
Каждый человек, постоянно пользуясь электроприборами, сталкивается с:
1. проводниками, которые пропускают электрический ток;
2. диэлектриками, обладающими изоляционными свойствами;
3. полупроводниками, сочетающими в себе характеристики первых двух типов веществ и изменяющие их в зависимости от приложенного управляющего сигнала.
Отличительной чертой каждой из перечисленных групп является свойство электропроводности.
Что такое проводник
К проводникам относят те вещества, которые имеют в своей структуре большое количество свободных, а не связанных электрических зарядов, способных начинать движение под воздействием приложенной внешней силы. Они могут быть в твердом, жидком или газообразном состоянии.
Если взять два проводника, между которыми образована разность потенциалов и подключить внутри них металлическую проволоку, то сквозь нее потечет электрический ток. Его носителями станут свободные электроны, не удерживаемые связями атомов. Они характеризуют величину электрической проводимости или способность любого вещества пропускать через себя электрические заряды — ток.
Значение электрической проводимости обратно пропорционально сопротивлению вещества и измеряется соответствующей единицей: сименсом (См).
В природе носителями зарядов могут быть:
По этому принципу электропроводность подразделяют на:
Качество проводника позволяет оценить зависимость протекающего в нем тока от значения приложенного напряжения. Ее принято называть по обозначению единиц измерения этих электрических величин — вольтамперной характеристикой.
Проводники с электронной проводимостью
Наиболее распространенным представителем этого типа являются металлы. У них электрический ток создается исключительно за счет перемещения потока электронов.
Внутри металлов они находятся в двух состояниях:
связанные силами атомного сцепления;
Электроны, удерживаемые на орбите силами притяжения ядра атома, как правило, не участвуют в создании электрического тока под действием внешних электродвижущих сил. Иначе ведут себя свободные частицы.
Если к металлическому проводнику не приложена ЭДС, то свободные электроны движутся хаотически, беспорядочно, в любых направлениях. Такое их перемещение обусловлено тепловой энергией. Оно характеризуется различными скоростями и направлениями перемещения каждой частицы в любой момент времени.
Когда к проводнику приложена энергия внешнего поля с напряженностью Е, то на все электроны вместе и каждый в отдельности действует сила, направленная противоположно действующему полю. Она создает строго ориентированное движение электронов, или другим словами — электрический ток.
Вольтамперная характеристика металлов представляет собой прямую линию, укладывающуюся в действие закона Ома для участка и полной цепи.
Кроме чистых металлов электронной проводимостью обладают и другие вещества. К ним относят:
отдельные модификации углерода (графит, уголь).
Все вышеперечисленные вещества, включая металлы, относят к проводникам 1-го рода. У них электропроводность никоим образом не связана с переносом массы вещества за счет прохождения электрического тока, а обусловливается только движением электронов.
Если металлы и сплавы поместить в среду сверхнизких температур, то они переходят в состояние сверхпроводимости.
Проводники с ионной проводимостью
К этому классу относятся вещества, у которых электрический ток создается за счет движения зарядов ионами. Они классифицируются как проводники второго рода. Это:
растворы щелочей, кислот солей;
расплавы различных ионных соединений;
различные газы и пары?.
Электрический ток в жидкости
Проводящие электрический ток жидкие среды, в которых происходит электролиз — перенос вещества вместе с зарядами и осаждение его на электродах, принято называть электролитами, а сам процесс — электролизом.
Он происходит под действием внешнего энергетического поля за счет приложения положительного потенциала к электроду-аноду и отрицательного — к катоду.
Ионы внутри жидкостей образуются за счет явления электролитической диссоциации, которая заключается в расщеплении части молекул вещества, обладающих нейтральными свойствами. В качестве примера можно привести хлорид меди, который в водном растворе распадается на составляющие ионы меди (катионы) и хлора (анионы).
Под действием приложенного напряжения к электролиту катионы начинают двигаться строго к катоду, а анионы — к аноду. Таким способом получают химически чистую, без примесей медь, которая выделяется на катоде.
Кроме жидкостей в природе существуют еще твердые электролиты. Их называют суперионными проводниками (супер-иониками), обладающими кристаллической структурой и ионной природой химических связей, обусловливающую высокую электропроводность за счет движения ионов одного типа.
Вольтамперная характеристика электролитов показана графиком.
Электрический ток в газах
При обычном состоянии среда газов обладает изоляционными свойствами и не проводит ток. Но под воздействием различных возмущающих факторов диэлектрические характеристики могут резко снизиться и спровоцировать прохождение ионизации среды.
Она возникает от бомбардировки нейтральных атомов движущимися электронами. В результате этого из атома выбивается один или несколько связанных электронов, и атом получает положительный заряд, превращаясь в ион. Одновременно внутри газа образуется дополнительное количество электронов, продолжающих процесс ионизации.
Таким образом, внутри газа электрический ток создается одновременным движением положительных и отрицательных частиц.
При нагреве или повышении напряженности приложенного электромагнитного поля внутри газа вначале проскакивает искра. По этому принципу образуется природная молния, которая состоит из каналов, пламени и факела разряда.
В лабораторных условиях проскакивание искры можно наблюдать между электродами электроскопа. Практическая же реализация искрового разряда в свечах зажигания двигателей внутреннего сгорания известна каждому взрослому человеку.
Искра характерна тем, что через нее сразу расходуется вся энергия внешнего поля. Если же источник напряжения способен поддерживать протекание тока через газ, то возникает дуга.
Примером электрической дуги является сварка металлов различными способами. Для ее протекания используется эмиссия электронов с поверхности катода.
Он возникает внутри газовой среды с большими напряженностями и неоднородными электромагнитными полями, что проявляется на высоковольтных воздушных линиях электропередач с напряжением от 330 кВ и выше.
Он протекает между проводом и близко расположенной плоскостью линии электропередачи. При коронном разряде происходит ионизация методом электронного удара около одного из электродов, обладающего областью повышенной напряженности.
Его используют внутри газов в специальных разрядных газосветных лампах и трубках, стабилизаторах напряжения. Он образуется за счет понижения давления в разрядном промежутке.
Когда в газах процесс ионизации достигает большой величины и в них образуется равное число положительных и отрицательных носителей зарядов, то такое состояние называют плазмой. Тлеющий разряд происходит в среде плазмы.
Вольтамперная характеристика протекания токов в газах представлена на картинке. Она состоит из участков:
2. самостоятельного разряда.
Первый характеризуется тем, что происходит под воздействием внешнего ионизатора и при прекращении его действия затухает. А самостоятельный разряд продолжает течь при любом условии.
Проводники с дырочной проводимостью
соединения отдельных металлов с теллуром, серой, селеном и некоторыми органическими веществами.
Они получили название полупроводников и относятся к группе №1, то есть не образуют переноса вещества при протекании зарядов. Для увеличения концентрации свободных электронов внутри них необходимо потратить дополнительную энергию на отрыв связанных электронов. Она получила название энергии ионизации.
В составе полупроводника работает электронно-дырочный переход. За счет его полупроводник пропускает ток в одном направлении и блокирует в обратном, когда к нему приложено противоположное внешнее поле.
Проводимость у полупроводников бывает:
Первый тип присущ конструкциям, у которых в процессе ионизации атомов своего вещества появляются носители зарядов: дырки и электроны. Их концентрация взаимно уравновешена.
Второй тип полупроводников создают за счет включения кристаллов с примесной проводимостью. Они обладают атомами трех- или пятивалентного элемента.
Полупроводники по проводимости бывают:
электронные n-типа «negative»;
дырочные p-типа «positive».
Вольтамперная характеристика обыкновенного полупроводникового диода показана на графике.
На основе полупроводников работают различные электронные приборы и устройства.
При очень низких температурах вещества определенные категории металлов и сплавов переходят в состояние, которое получило название сверхпроводимости. У этих веществ электрическое сопротивление току снижается практически до нулевого значения.
Переход происходит за счет изменения тепловых свойств. По отношению к поглощению или выделению теплоты во время перехода в сверхпроводящее состояние при отсутствии магнитного поля сверхпроводники подразделяют на 2 рода: №1 и №2.
Явление сверхпроводимости проводников происходит за счет образования куперовских пар, когда создается связанное состояние для двух соседних электронов. У созданной пары образуется двойной заряд электрона.
Распределение электронов в металле при состоянии сверхпроводимости показано графиком.
Магнитная индукция сверхпроводников зависит от напряженности электромагнитного поля, а на величину последней влияет температура вещества.
Свойства сверхпроводимости проводников ограничены критическими значениями предельного магнитного поля и температуры для них.
Таким образом, проводники электрического тока могут быть выполнены из совершенно различных веществ и обладать отличающимися друг от друга характеристиками. На них всегда оказывают влияние условия окружающей среды. По этой причине границы эксплуатационных характеристик проводников всегда оговариваются техническими нормативами.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: