Что называется площадью полной поверхности призмы
Инструменты пользователя
Инструменты сайта
Боковая панель
Стереометрия:
Контакты
Призма
Призма — многогранник, две параллельные грани которого ( основания ) n−угольники, а остальные n граней ( боковые ) — параллелограммы. Очевидно, что все боковые ребра призмы равны, и в основаниях — равные n−угольники с соответственно параллельными сторонами.
Боковыми ребрами называются отрезки, соединяющие соответствующие вершины оснований.
Высотой призмы называется расстояние между плоскостями ее оснований.
Призма называется прямой, если ее боковое ребро перпендикулярно плоскости основания. См.Рис.1
Призма называется наклонной, если боковое ребро призмы не перпендикулярно плоскости основания. См.Рис.2
Правильная призма — прямая призма, основания которой являютя правильными многоугольниками.
Площадь боковой поверхности призмы ( Sбок ) — сумма площадей её боковых граней.
Теорема о площади боковой поверхности прямой призмы. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.
Сечение, образованное плоскостью, перпендикулярной к боковому ребру призмы, называется нормальным (ортогональным) сечением призмы.
Призма называется параллелепипедом, если её основания — параллелограммы.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Перечень вопросов, рассматриваемых в теме:
Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.
Боковые грани – все грани, кроме оснований.
Боковые ребра – общие стороны боковых граней.
Основания призмы – равные многоугольники, расположенные в параллельных плоскостях.
Прямая призма – призма, боковые ребра которой перпендикулярны основаниям.
Правильная призма – прямая призма, в основании которой лежит правильный многоугольник.
Площадь полной поверхности призмы – сумма площадей всех ее граней.
Площадь боковой поверхности призмы – сумма площадей ее боковых граней.
Параллелепипед – призма, все грани которой – параллелограммы.
Прямоугольный параллелепипед – параллелепипед в основании которого лежит прямоугольник.
Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа,
геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. Уровни – М. : Просвещение, 2014. – 255 с.
Открытые электронные ресурсы:
Открытый банк заданий ФИПИ http://ege.fipi.ru/
Теоретический материал для самостоятельного изучения
Определение призмы. Элементы призмы.
Рассмотрим два равных многоугольника А1А2. Аn и В1В2. Вn, расположенных в параллельных плоскостях α и β соответственно так, что отрезки А1В1, А2В2. АnВn, соединяющие соответственные вершины многоугольников, параллельны (рис. 1).
Дадим определение призмы. Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.
При этом равные многоугольники, расположенные в параллельных плоскостях, называются основаниями призмы, а параллелограммы – боковыми гранями призмы. Общие стороны боковых граней будем называть боковыми ребрами призмы.
Отметим, что все боковые ребра призмы равны и параллельны (как противоположные стороны параллелограммов).
Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Обратите внимание, что все высоты призмы равны между собой, так как основания расположены на параллельных плоскостях. Также высота призмы может лежать вне призмы (рис. 2).
Рисунок 2 – Наклонная призма
Если боковые ребра призмы перпендикулярны основаниям, то призма называется прямой. В противном случае, призма называется наклонной.
Высота прямой призмы равна ее боковому ребру.
На рисунке 3 приведены примеры прямых призм
Рисунок 3 – Виды призм.
Прямая призма называется правильной, если ее основание – правильный многоугольник. В правильной призме все боковые грани – равные прямоугольники.
Иногда четырехугольную призму, грани которой параллелограммы называют параллелепипедом. Известный вам правильный параллелепипед – это куб.
Площадь полной поверхности призмы. Площадь боковой поверхности призмы.
Площадью полной поверхности призмы (Sполн) называется сумма площадей всех ее граней, а площадью боковой поверхности (Sбок) призмы – сумма площадей ее боковых граней.
Таким образом, верно следующее равенство: Sполн= Sбок+2Sосн, то есть площадь полной поверхности есть сумма площади боковой поверхности и удвоенной площади основания.
Чему равна площадь боковой поверхности прямой призмы?
Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.
Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте призмы – h. Площадь боковой поверхности призмы равна сумме площадей боковых граней, то есть прямоугольников. Площадь каждого прямоугольника есть произведение высоты h и стороны основания. Просуммируем эти площади и вынесем множитель h за скобки. В скобках получим сумму всех сторон основания, то есть периметр основания P. Таким образом Sбок=Pоснh.
Пространственная теорема Пифагора
Прямой параллелепипед, основание которого – прямоугольник называется прямоугольным.
Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, исходящих из одной вершины.
Рисунок 4 – Прямоугольный параллелепипед
Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 и найдем квадрат длины его диагонали А1С.
Для этого рассмотрим треугольник А1АС:
Ребро АА1 перпендикулярно плоскости основания (ABC) (т.к. параллелепипед прямой), значит АА1 перпендикулярна любой прямой, лежащей в плоскости основания, в том числе АС. Таким образом, ΔА1АС – прямоугольный.
По теореме Пифагора получаем: А1С 2 =АА1 2 +АС 2 (1).
Так как в основании прямоугольник, то ВС=АD.
Что и требовалось доказать
Доказанная теорема является аналогом теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.
Примеры и разбор решения заданий тренировочного модуля
Найдите для каждой картинки пару
1)2) 3)
4)5)
6)
Все изображения можно разделить на две группы: призмы и многоугольники. Вспомним, что основанием призмы является многоугольник. Теперь необходимо посчитать количество вершин многоугольников в основаниях призм и сопоставить их с нужным изображением. Таким образом, получаем следующий ответ: 1 и 3, 2 и 4, 5 и 6.
Какие из перечисленных объектов могут быть элементами призмы?
1) параллельные плоскости
Вспомним сначала, какие элементы есть у призмы. Это ребра, грани, вершины, основания, высота, диагональ.
Ребра, высота и диагональ призмы представляют собой отрезок. Грани и основания – это многоугольники, то есть части плоскостей. Вершины – точки. Таким образом, подходят варианты 2, 3,4.
Что называется площадью полной поверхности призмы
Ключевые слова: призма, многогранник, боковые грани, боковые ребра, высота, боковая поверхность, основания
Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой.
Грани призмы, отличные от оснований, называются боковыми гранями, а их ребра называются боковыми ребрами.
Все боковые ребра равны между собой как параллельные отрезки, ограниченные двумя параллельными плоскостями. Все боковые грани призмы являются параллелограммами. Соответствующие стороны оснований призмы равны и параллельны. Поэтому в основаниях лежат равные многоугольники.
Поверхность призмы состоит из двух оснований и боковой поверхности.
Высотой призмы называется отрезок, являющийся общим перпендикуляром плоскостей, в которых лежат основания призмы.
Высота призмы равна расстоянию между плоскостями оснований.Сечение призмы плоскостью, проведенной через два боковых ребра, не принадлежащих одной грани, называется диагональным сечением призмы.
Прямой призмой называется призма, у которой боковое ребро перпендикулярно плоскости основания, другие призмы называются наклонными.
Правильной призмой называется прямая призма, основанием которой является правильный многоугольник.
Призма, основанием которой является параллелограмм, называется параллелепипедом.
Площадью боковой поверхности призмы называется сумма площадей ее боковых граней.
Призмы бывают прямые и наклонные.
Нахождение площади правильной призмы: формула и задачи
В данной публикации мы рассмотрим, как можно вычислить площадь поверхности правильной призмы разных видов (треугольной, четырехугольной и шестиугольной), а также, разберем примеры решения задач для закрепления материала.
Правильная призма – это прямая призма, основанием которой является правильный многоугольник. А прямой фигура является в том случае, если ее боковые грани перпендикулярны основаниям.
Формула площади правильной призмы
1. Общая формула
Площадь (S) полной поверхности призмы равна сумме площади ее боковой поверхности и двух площадей основания.
Площадь боковой поверхности прямой призмы равняется произведению периметра ее основания на высоту.
Формула периметра и площади основания правильной призмы зависит от вида многогранника. Ниже мы рассмотрим самые популярные виды.
2. Площадь правильной треугольной призмы
Основание: равносторонний треугольник.
Площадь | Формула |
основание | » data-order=»«> |
боковая поверхность | |
полная | » data-order=»«> |
3. Площадь правильной четырехугольной призмы
Основание: квадрат.
Площадь | Формула |
основание | |
боковая поверхность | |
полная |
Примечание: Если высота правильной четырехугольной призмы равняется длине стороны ее основания, значит мы имеем дело с кубом, площадь одной грани которого равна a 2 . А так как все шесть граней куба равны, то полная площадь его поверхности равняется 6a 2 .
4. Площадь правильной шестиугольной призмы
Основание: правильный шестиугольник
Площадь | Формула |
основание | » data-order=»«> |
боковая поверхность | |
полная | » data-order=»«> |
Примеры задач
Задание 1:
Сторона правильной треугольной призмы равна 6 см, а ее высота – 8 см. Найдите полную площадь поверхности фигуры.
Решение:
Воспользуемся подходящей формулой, подставив в нее известные нам значения:
Решение:
Выведем выражение для нахождения высоты призмы из формулы ее полной площади:
Скоро вебинар
«ПРЯМАЯ НА ПЛОСКОСТИ»
(Аналитическая геометрия). Жми подробнее.
Две равные грани называются основаниями призмы (ABCDE, A1 B1C1D1E1).
Все боковые грани образуют боковую поверхность призмы.
Все боковые грани призмы являются параллелограммами.
Ребра, не лежащие в основаниях, называются боковыми ребрами призмы(AA1, BB1, CC1, DD1, EE1).
Диагональю призмы называется отрезок, концами которого служат две вершины призмы, не лежащие на одной ее грани (АD1).
Длина отрезка, соединяющего основания призмы и перпендикулярного одновременно обоим основаниям,называется высотой призмы.
Среди прямых призм выделяется частный вид: правильные призмы.
Прямая призма называется правильной, если ее основания-правильные многоугольники.
У правильной призмы все боковые грани равные прямоугольники.
Частным случаем призмы является параллелепипед.
Параллелепипед
Свойства и теоремы:
Некоторые свойства параллелепипеда аналогичны известным свойствам параллелограмма.
Прямоугольный параллелепипед, имеющий равные измерения, называются кубом.
У куба все грани равные квадраты.
Квадрат диагонали, равен сумме квадратов трех его измерений
,
Площадь полной и боковой поверхности призмы
Площадь полной поверхности призмы называется сумма площадей всех ее граней
Площадь боковой поверхности называется сумма площадей ее боковых граней
где Sполн— площадь полной поверхности,
Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.
Объем призмы
Объем призмы равен произведению площади основания на высоту.
V = S*h,