Что называется первичной структурой нуклеиновых кислот
Что называется первичной структурой нуклеиновых кислот
§ 14. СТРУКТУРА НУКЛЕИНОВЫХ КИСЛОТ
Первичная структура нуклеиновых кислот
Первичная структура нуклеиновых кислот представляет собой порядок чередования нуклеотидов в полинуклеотидной цепи (рис. 40). Нуклеотиды в молекулах ДНК и РНК связаны друг с другом фосфодиэфирными мостиками между 3’- и 5’- углеродными атомами остатков пентоз.
Рис. 40. Первичная структура нуклеиновых кислот
Вторичная структура ДНК
Вторичная структура (двойная спираль) была предложена американским генетиком Д.Уотсоном и английским физиком Ф.Криком в1953 г. Это открытие произвело переворот в исследовании нуклеиновых кислот. Предпосылкой для постулирования структуры двойной спирали послужили исследования других ученых. Э.Чаргафф и более поздние исследователи, изучая нуклеотидный состав ДНК различных видов организмов, сделали следующие выводы:
1. нуклеотидный состав ДНК разных тканей одного и того же вида одинаков;
2. нуклеотидный состав ДНК у разных видов различен;
3. нуклеотидный состав не зависит от возраста и питания;
4. в составе ДНК число остатков аденина всегда равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина. Из этого следует, что сумма пуриновых оснований равна сумме пиримидиновых – А+Г=Т+С.
Тогда же в 50-е гг. ХХ в., Р.Франклин и М.Уилкинс опубликовали рентгенограмму, полученную при рентгеноструктурном анализе нитей ДНК. Метод рентгеноструктурного анализа широко используется при исследовании пространственной структуры молекул. Предложенная Уотсоном и Криком модель пространственной организации ДНК объяснила результаты исследований выше названых ученых.
Согласно этой модели, ДНК состоит из двух цепей, закрученных в правую двойную спираль (рис. 41б.). При этом цепи располагаются антипараллельно (рис. 41а.), т.е. они ориентированы во взаимно противоположных направлениях. Плоские молекулы азотистых оснований расположены перпендикулярно оси двойной спирали. На внешней стороне двойной спирали расположены остатки дезоксирибозы и фосфорной кислоты. Цепи ДНК связаны друг с другом водородными связями, которые образуются между гуанином одной цепи и цитозином другой цепи, а также между тимином и аденином, расположенными в разных цепях. При этом между тимином и аденином образуются две водородные связи, а между гуанином и цитозином – три водородные связи (рис. 42.). Способность гуанина взаимодействовать в молекуле ДНК только с цитозином, а аденина – только с тимином называют комплементарностью, а основания гуанин и цитозин, аденин и тимин – комплементарными. Согласно принципу комплементарности, последовательность одной цепи будет определять последовательность другой цепи. Всегда против аденина будет находится тимин, а против гуанина – цитозин. Таким образом, цепи ДНК в двойной спирали будут комплементарны друг другу. Помимо водородных связей, возникающих при взаимодействии комплементарных оснований друг с другом, второй, не менее значительной, силой, стабилизирующей двойную спираль, является стэкинг – взаимодействие находящихся в стопке оснований. Основания расположены друг над другом и сближены своими плоскостями. В результате между ними возникают гидрофобные взаимодействия, а также дипольные взаимодействия p–связей.
Цепи ДНК (рис. 41б) при закручивании в двойную спираль образуют большую и малую борозды, ширина большой борозды – 2,2 нм, малой – 1,2 нм. На один виток спирали приходится 10 нуклеотидных остатков. Полный виток спирали имеет длину 3,4 нм. Диаметр двойной спирали 1,8 нм.
Параметры двойной спирали в зависимости от условий и состава ДНК могут несколько отличатся от той модели, которую предложили Уотсон и Крик. В настоящее время описаны и другие модели ДНК. Тем не менее во всех предложенных моделях сохраняется принцип комплементарности, и цепи ДНК закручены в двойную спираль.
Рис. 41. Параметры ДНК.
Рис. 42. Образование водородных связей между аденином и тимином, гуанином и цитозином в молекуле ДНК
Пространственная организация РНК
Природные РНК можно разделить на 2 группы: одноцепочечные и двухцепочечные РНК. Двухцепочечные РНК состоят из двух нитей РНК, комплементарных друг другу. Этот тип РНК встречается в составе некоторых вирусов. По своей организации двухцепочные РНК сходны с ДНК. Они закручены в двойную правую спираль, цепи РНК в них антипаралельны, между комплементарными основаниями образованы водородные связи, углеводнофосфатный скелет расположен снаружи спирали.
Большинство же природных РНК являются одноцепочечными. Несмотря на это, в своей структуре они могут иметь фрагменты двойной спирали, чередующиеся с линейными одноцепочечными участками РНК. Фрагменты двойной спирали образованы комплементарными участками РНК, расположенными в пределах одной цепи (рис. 43.). В некоторых случаях доля двухспиральных участков в РНК может достигать 75 – 90 %.
Рис. 43. Двухцепочечные шпильки в молекуле РНК
Первичная структура нуклеиновых кислот
Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК и РНК. Такая цепь стабилизируется 3′,5′-фосфодиэфирными связями. Поскольку молекулярная масса нуклеиновых кислот колеблется в широких пределах (от 2•10 4 до 10 10 –10 11 ), установить первичную структуру всех известных РНК и особенно ДНК весьма сложно. Тем не менее во всех нуклеиновых кислотах (точнее, в одноцепочечной нуклеиновой кислоте) имеется один и тот же тип связи – 3′,5′-фосфодиэфирная связь между соседними нуклеотидами. Эту общую основу структуры можно представить следующим образом:
Установлено, что в образовании межнуклеотидной связи участвуют гидроксильные группы в 3′- и 5′-положениях остатков углевода.
К настоящему времени удалось определить первичную структуру почти всех тРНК, ряда молекул 5S рРНК, 16S рРНК E.coli, вирусных РНК, в состав которых входят сотни и тысячи нуклеотидных остатков. Ниже приводится примерная схема последовательности нуклеотидов в молекуле РНК. Все клеточные РНК в основном состоят из одноцепочечной по-линуклеотидной цепи:
Полинуклеотидная цепь молекулы РНК имеет на одном конце почти всегда свободный монофосфорный эфир, который принято обозначать как 5′-конец; на противоположном конце цепи такой фосфат отсутствует, а содержится нуклеотид со свободными 2′- и 3′-гидроксильными группами. Если подвергнуть щелочному гидролизу молекулу РНК, то в качестве концевого нуклеотида будут обнаружены ЦМФ со свободным фосфатом у 5′-конца и свободный аденозин в виде свободного нуклеозида у 3′-конца полинуклеотидной цепи.
В выяснении первичной структуры РНК решающую роль сыграли методы ступенчатого гидролиза, осуществленного в основном экзонуклеа-зами и заключающегося в последовательном отщеплении по одному мононуклеотиду с одного конца молекулы нуклеиновой кислоты. Ниже представлена первичная структура первой РНК, имеющей 77 нуклеотидов, для которой была расшифрована нуклеотидная последовательность в 1965 г. Р. Холли и сотр., а именно аланиновой тРНК:
В этой структуре Р – остаток фосфата, ψ – псевдоУМФ, МеГ – метилгуа-нин, ДиНУ – дигидроурацил, ДиМеГ – диметилгуанин, МеИ – метилинозин.
Следует особо указать на две существенные особенности первичной структуры всех тРНК. Первая из них заключается в том, что 5′-концом всегда является гуаниловая (редко цитидиловая) кислота, несущая свободный остаток фосфата у С-5′. Вторая особенность – наличие на противоположном конце молекулы остатков трех мононуклеотидов с одинаковой последовательностью – ЦЦА, причем остаток адениловой кислоты содержит свободную 3′-ОН-группу.
Между этими структурами в строго определенной последовательности располагаются все остальные нуклеотидные остатки, среди которых на долю минорных нуклеотидов приходится до 10%. Полинуклеотидная цепь разных типов тРНК содержит около 75 нуклеотидов.
Матричные (информационные) РНК относятся к наиболее гетерогенному классу нуклеиновых кислот, отличающихся по массе (см. табл. 3.1), структуре, размерам, стабильности и функциям. Основной функцией мРНК является перенос информации от ДНК (точнее, от гена) на белоксинте-зирующую систему клетки. мРНК выполняет роль матрицы и, следовательно, определяет первичную структуру синтезируемого белка (подробнее см. главу 14). мРНК наделены рядом особенностей первичной структуры; в частности, на 5′-конце все они содержат определенную последовательность рибонуклеотидов, получившую название шапочки (кэп). Первым нуклеотидом является 7-метилгуанозинтрифосфат, который присоединяется к 5′-гидроксилу соседнего мононуклеотида, представленного 2′-О-метилпуриновым нуклеотидом. На другом 3′-конце большинства (но не всех) мРНК содержится полиадениловая последовательность (поли-А), насчитывающая от 150 до 200 нуклеотидов.
Роль «кэпирования» и «полиаденилирования» мРНК в белковом синтезе окончательно не выяснена. Предполагают, что кэп необходим для специфического узнавания в процессе трансляции, в то время как поли-А отводится роль фактора стабилизации всей молекулы мРНК.
В последние годы расшифрована первичная структура не только низкомолекулярных 5S рРНК разных бактерий и 5,8S рРНК клеток животных, но и высокомолекулярных 16S и 18S рРНК, насчитывающих до 1200–1500 нуклеотидных звеньев. Более того, уже выяснены нуклеотидные последовательности 23S рРНК E.coli и 25S рРНК дрожжевой клетки, а также первичные структуры высокомолекулярных (28S) рРНК клеток эукариот, насчитывающих около 4700 нуклеотидов.
В настоящее время проводятся исследования первичных структур различных молекул ДНК. Около 15 лет назад была полностью расшифрована нуклеотидная последовательность митохондриальной ДНК человека (16569 пар нуклеотидов). Известны полные нуклеотидные последовательности ДНК ряда вирусов и плазмид. Совсем недавно завершено определение нуклеотидных последовательностей геномов двух прокариотических организмов (Haemophilus influenzae и Mycoplasma genitalum) и появились сообщения о расшифровке генома первого эукариотического организма – дрожжей. Близки к завершению аналогичные исследования генома E.coli и генома нематоды Caenorhabditis elegans. Исследователи активно работают над полной расшифровкой генома человека.
Результаты секвенирования (определение нуклеотидной последовательности) разных молекул ДНК накапливаются в виде компьютерных банков данных, которые уже доступны для пользователей международных компьютерных сетей (например, «Internet»). Ниже представлены три варианта схемы нуклеотидной последовательности ДНК:
Типы и структура нуклеиновых кислот
Типы нуклеиновых кислот
Есть два типа нуклеиновая кислота : дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Оба играют центральную роль в каждой функции каждого живого организм, Нуклеиновые кислоты имеют сходные основные структуры с важными отличиями. Они состоят из мономер нуклеотиды, связанные как звенья в цепи, чтобы сформировать полимеры нуклеиновой кислоты. Нуклеотиды состоят из нуклеозида (комбинация пентозы моносахарид молекула и азотистая основа ) и фосфатная группа, Разница между РНК и ДНК заключается в одном азотистом основании и одном атоме кислорода в молекуле сахара.
ДНК – это генетический проект живого организма, в котором хранится вся информация и из которого может быть передана вся информация. Имеет отличительный двойная спираль Форма – две отдельные нити, которые сплетаются друг с другом. Нить ДНК намного длиннее, чем у единственной нити РНК. Это потому, что каждая нить ДНК в каждом клетка содержит план для всего организма. Дезоксирибонуклеиновая кислота находится в основном в ядре. Тем не менее, ДНК в гораздо более короткой версии также можно найти в митохондрии (мтДНК), где он поставляет гены, необходимые для производства аденозинтрифосфата, наиболее важного источника клеточной энергии.
Любая клетка с ядром содержит нуклеиновую кислоту в форме ДНК. Существуют различные исключения из правила. Некоторые клетки теряют свое ядро и ДНК в процессе старения, такие как зрелый красный кровь клетки, корнеоциты и кератиноциты. Тромбоциты крови иногда упоминаются как не содержащие ни ядра, ни ДНК; однако тромбоциты представляют собой фрагменты мегакариоцитов и не считаются действительными клетками. Одноклеточные организмы (прокариоты), такие как бактерии не имеют ядра, но содержат свободные нити ДНК в цитоплазма, как показано ниже.
Структура нуклеиновой кислоты ДНК
Структура ДНК, всемирно признанной двойной спирали, основана на двух нитях сахарофосфатного остова, удерживаемых вместе азотистыми базовыми веретенами. ДНК содержит четыре азотистых основания или нуклеиновых основания: аденин, тимин, цитозин и гуанин. Это природные соединения, которые дают каждому нуклеотид Его название и подразделяются на две группы – пиримидины и пурины. В то время как пиримидиновые цитозин, тимин и урацил (см. РНК) представляют собой небольшие конструкции с одним кольцом, аденин и гуанин имеют более крупные и двойные кольца. Это различие в форме и размерах и последующее различие в электрическом заряде является важным, поскольку оно допускает только конкретные дополнительные пары между различными типами групп; в ДНК аденин будет связываться только с тимином, а цитозин будет связываться только с гуанином. Это создает азотистые базовые шпиндели одинаковой длины и зеркальное отображение на противоположной нити.
Форма двойной спирали ДНК обусловлена формой нуклеотидов мономера. Когда асимметричные молекулы сложены одна поверх другой, часто получается спираль. В ДНК каждая нить идет параллельно друг другу или в противоположных направлениях.
Нуклеотидный мономер, который составляет единственное звено цепи полимера ДНК, образован из нуклеиновой основы, фосфатной группы и пятиуглеродного (пентозного) сахара, называемого 2-дезоксирибоза, «Дезокси» относится к потере атома кислорода по отношению к другой форме пентозного сахара, известной как рибоза (см. РНК). Этот недостаток атома кислорода также играет роль в спиральной структуре ДНК. На следующем изображении показана разница в химической структуре этих двух пентозных сахаров. Обратите внимание на отсутствие красной молекулы кислорода на втором углероде дезоксирибозы слева.
Дезоксирибоза ковалентно связывается с фосфатной группой. Это производит цепь, известную как сахарно-фосфатный остов. Эта структура оставляет каждое нуклеотидное основание открытым и свободным для связи с правильным нуклеотидным основанием на противоположной цепи.
РНК находится в каждом типе клеток. Это важно для производства белков посредством репликации генетической информации. Используя ДНК-схему, РНК в различных формах копирует и передает закодированные генетические данные в клеточные рибосомы. В свою очередь, рибосомы переводят эти данные в форму белков. РНК не связана с двухспиральной структурой ДНК. Тем не менее, он обладает способностью формировать эту структуру на временный период и существует в отдельных нитях различной длины. Даже в двуядерных эритроцитах РНК продолжает осуществлять процесс транскрипция, Это потому, что биосинтез белка необходим для каждой реакции в живом организме.
Типы РНК
РНК имеет четыре основные формы, названные в соответствии с ее конкретной ролью. Они известны как мессенджер РНК (мРНК ), перенос РНК (тРНК ), рибосомная РНК (рРНК) и некодирующая РНК (нкРНК). Три из них – мРНК, тРНК и рРНК – отвечают за выработку белков из одного аминокислоты в соответствии с планом ДНК. Некодирующая РНК – это широкая группа рибонуклеиновых кислот, которые не продуцируют белки посредством кодов ДНК. Исследования в этой группе все еще находятся в зачаточном состоянии, и многие из них относятся к категории, известной как «мусорная» РНК. Однако большие количества определенных типов РНК могут указывать функции в таких областях, как хромосома структура, гомеостаз и клетка физиология.
Структура нуклеиновой кислоты РНК
По структуре РНК очень похожа на ДНК. Основные отличия: отсутствие структуры с двойной спиралью, рибоза вместо дезоксирибозы и урацил вместо тимина.
РНК в основном обнаруживается в единичных или сложенных формах. Он имеет тенденцию образовывать двойную спираль только на временной основе. Пентозный сахар в форме рибозы, который является частью сахарофосфатного остова РНК, имеет дополнительный атом кислорода на втором атоме углерода, который образует гидроксильная группа, Нуклеиновая основа урацила, специфичная для РНК, заменяет тимин, обнаруженный в ДНК. Изображение ниже ясно показывает эти структурные и элементные различия.
Структура нуклеиновой кислоты
Нуклеиновые кислоты могут образовывать огромные полимеры, которые могут принимать различные формы. Таким образом, существует несколько способов обсуждения структуры нуклеиновой кислоты. «Структура нуклеиновой кислоты» может означать нечто такое простое, как последовательность нуклеотидов в куске ДНК. Или это может означать что-то настолько сложное, как то, как складывается молекула ДНК и как она взаимодействует с другими молекулами.
Вот немного о каждом уровне структуры нуклеиновой кислоты:
Первичная структура
Нуклеотиды – строительные блоки нуклеиновых кислот и «буквы» генетического «кода» – состоят из двух компонентов:
Вторичная структура
Вторичная структура относится к тому, как нуклеотидные основания образуют водородную связь друг с другом и какую форму это создает из их двух цепей. Водородные связи, которые образуются между комплементарными основаниями двух цепей нуклеиновой кислоты, весьма отличаются от Ковалентная связь который образуется между сестринскими мономерами в цепи нуклеиновой кислоты.
Связи между основаниями в одной цепи нуклеиновой кислоты являются ковалентными – они полностью разделяют свои электроны и связаны так, что их очень трудно разорвать. Атомы, связанные ковалентными связями, являются частью одной и той же молекулы. С другой стороны, водородные связи представляют собой слабые связи, возникающие из-за слабых временных притяжений между положительно заряженными ядрами водорода и электронами других атомов. Молекулы на самом деле не разделяют электроны, поэтому их можно довольно легко разделить. Изменения факторов окружающей среды, таких как кислотность, также могут нарушать водородные связи.
Наиболее распространенная вторичная структура, с которой мы знакомы, – это двойная спираль, которая образуется, когда две комплементарные нити водородной связи ДНК связаны друг с другом. Возможны и другие структуры, такие как «стволовая петля», которая возникает, когда отдельная молекула РНК сворачивается назад и образует водородные связи с самим собой, или четырехрукая структура, которая может возникать, когда четыре разные цепи водородной связи нуклеиновой кислоты с разными части друг друга. Считается, что некоторые из этих вторичных структурных возможностей используются, чтобы помочь контролировать ген выражение и выполнять другие биологические функции. В целом, ферменты транскрипции будут экспрессировать только те гены, к которым они имеют доступ. Если фрагмент гена или РНК «связан» в клубке нуклеиновых кислот, ферменты могут быть менее вероятно его достичь. Гены в более открытых, простых вторичных структурах, с другой стороны, могут с большей вероятностью быть экспрессированными.
Третичная структура
Третичная структура относится к положению атомов нуклеиновой кислоты в пространстве. Есть несколько общих измерений, которые обсуждаются, когда речь идет о третичной структуре нуклеиновой кислоты, в том числе:
Хотя любая асимметричная молекула может иметь стереоизомер, как вы можете догадаться, «длина поворота спирали» довольно уникальна для нуклеиновых кислот.
Это еще одна мера точной формы и свойств спирали нуклеиновой кислоты. Это может быть химически и биологически важным, поскольку оно определяет, какие ферменты и молекулы могут влиять на ДНК или РНК.
В двойной спирали нуклеиновой кислоты «основная канавка» – это более широкий путь, который открывается между двумя двумя цепями нуклеиновой кислоты. «Малая борозда» является более узкой. В некоторых случаях эти бороздки могут служить сайтами связывания для других молекул.
Размеры главных и второстепенных канавок могут варьироваться в зависимости от нескольких факторов, включая химическую среду двойной спирали. Все, что влияет на прочность водородных связей, может повлиять на размер основных и второстепенных канавок.
Четвертичная структура
Четвертичная структура относится к большим формам и структурам, которые могут быть сделаны нуклеиновыми кислотами. Подобно аминокислотам и белкам, нуклеиновые кислоты могут образовывать большие структуры. Форма этих структур может быть важна для их функций.
Примеры четвертичных структур нуклеиновых кислот включают хроматиды – огромные молекулы ДНК, которые плотно упакованы для хранения и транспортировки во время деление клеток – и рибосомы, которые представляют собой органеллы, сделанные частично из РНК.
Некоторые рибозимы также выполняют свою работу частично благодаря использованию четвертичной структуры. Это позволяет им взаимодействовать со своими субстратами. Как и ферменты из белка, рибозимы должны точно соответствовать подложка чтобы катализировать его химические реакции.
Урок №97-98. Структура нуклеиновых кислот. Биологическая роль нуклеиновых кислот
Нуклеиновые кислоты — это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передаче наследственной информации в живых организмах.
Молекулярная масса нуклеиновых кислот может меняться от сотен тысяч до десятков миллиардов. Они были открыты и выделены из клеточных ядер еще в XIX в., однако их биологическая роль была выяснена только во второй половине XX в.
Для оснований, содержащих группу –ОН, характерно подвижное равновесие структурных изомеров, обусловленное переносом протона от кислорода к азоту и наоборот:
Гуанин существует в виде двух структурных изомеров:
2). М оносахарид
Рибоза и 2-дезоксирибоза относятся к моносахаридам, содержащим пять углеродных атомов. В состав нуклеиновых кислот они входят в циклических β-формах:
3) . О статок фосфорной кислоты
ДНК и РНК
рибонуклеиновые кислоты (РНК)
дезоксирибонуклеиновые кислоты (ДНК)
Молекулярная масса ДНК достигает десятков миллионов а.е.м. Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.
При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.
Первичная структура нуклеиновых кислот – это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.
В сокращённом однобуквенном обозначении эта структура записывается как
. – А – Г – Ц –.
Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.
Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.
Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием.
Пиримидиновое основание комплементарно пуриновому основанию:
Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,
ТИМИН (Т) комплементарен АДЕНИНУ (А),
ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).
Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.
Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:
молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи.
молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.
Вторичная структура РНК
В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).
Основная роль РНК – непосредственное участие в биосинтезе белка.
Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:
информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;
транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа «узнают» по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;
рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.