Что называется периодом решетки
Дифракционная решетка
Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.
Содержание
Виды решёток
Описание явления
Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.
Формулы
Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.
Если известно число штрихов ( N ), приходящихся на 1 мм решётки, то период решётки находят по формуле: 0,001 / N
Формула дифракционной решётки:
d — период решётки, α — угол максимума данного цвета, k — порядок максимума, λ — длина волны.
Характеристики
Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ — для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки
Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.
Изготовление
Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.
Применение
Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.
Литература
См. также
Полезное
Смотреть что такое «Дифракционная решетка» в других словарях:
ДИФРАКЦИОННАЯ РЕШЕТКА — оптический прибор; совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных полосок (штрихов), равноотстоящих друг от друга, на которых происходит дифракция света. Дифракционная решетка разлагает… … Большой Энциклопедический словарь
ДИФРАКЦИОННАЯ РЕШЕТКА — ДИФРАКЦИОННАЯ РЕШЕТКА, пластина с нанесенными на нее параллельными линиями на равном расстоянии друг от друга (до 1500 на 1 мм), которая служит для получения СПЕКТРОВ при ДИФРАКЦИИ света. Трансмиссионные решетки прозрачные и расчерчиваются на… … Научно-технический энциклопедический словарь
дифракционная решетка — Зеркальная поверхность с нанесенными на нее микроскопическими параллельными линиями, прибор, разделяющий (подобно призме) падающий на него свет на составные цвета видимого спектра. [http://www.morepc.ru/dict/] Тематики информационные технологии в … Справочник технического переводчика
дифракционная решетка — difrakcinė gardelė statusas T sritis Standartizacija ir metrologija apibrėžtis Optinis periodinės sandaros įtaisas difrakciniams spektrams gauti. atitikmenys: angl. diffraction grating vok. Beugungsgitter, n; Diffraktionsgitter, n rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Дифракционная решетка — оптический прибор, совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных штрихов (полосок), равноотстоящих друг от друга, на которых происходит дифракция света. Д.Р. разлагает падающий на нее свет в… … Астрономический словарь
дифракционная решетка (в оптических линиях связи) — дифракционная решетка Оптический элемент с периодической структурой, отражающий (или пропускающий) свет под одним или несколькими разными углами, зависящими от длины волны. Основу составляют периодически повторяющиеся изменения показателя… … Справочник технического переводчика
вогнутая спектральная дифракционная решетка — Спектральная дифракционная решетка, изготовленная на вогнутой оптической поверхности. Примечание Вогнутые спектральные дифракционные решетки бывают сферическими и асферическими. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
голограммная спектральная дифракционная решетка — Спектральная дифракционная решетка, изготовления регистрацией на чувствительном к излучению материале интерференционной картины от двух и более когерентных пучков. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
нарезная спектральная дифракционная решетка — Спектральная дифракционная решетка, изготовленная нанесением штрихов на делительной машине. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
отражательная спектральная дифракционная решетка — Спектральная дифракционная решетка, выполняющая функции диспергирующего элемента в отраженном от нее оптическом излучении. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
5.5. Дифракционная решетка
Широкое распространение в научном эксперименте и технике получили дифракционные решетки, которые представляют собой множество параллельных, расположенных на равных расстояниях одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционные решетки изготавливаются с помощью делительной машины, наносящей штрихи (царапины) на стекле или другом прозрачном материале. Там, где проведена царапина, материал становится непрозрачным, а промежутки между ними остаются прозрачными и фактически играют роль щелей.
Рассмотрим сначала дифракцию света от решетки на примере двух щелей. (При увеличении числа щелей дифракционные максимумы становятся лишь более узкими, более яркими и отчетливыми.)
Пусть а — ширина щели, a b — ширина непрозрачного промежутка (рис. 5.6).
Рис. 5.6. Дифракция от двух щелей
Период дифракционной решетки — это расстояние между серединами соседних щелей:
Разность хода двух крайних лучей равна
Если разность хода равна нечетному числу полуволн
то свет, посылаемый двумя щелями, вследствие интерференции волн будет взаимно гаситься. Условие минимумов имеет вид
Эти минимумы называются дополнительными.
Если разность хода равна четному числу полуволн
то волны, посылаемые каждой щелью, будет взаимно усиливать друг друга. Условие интерференционных максимумов с учетом (5.36) имеет вид
Это формула для главных максимумов дифракционной решетки.
Кроме того, в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, то есть главные минимумы решетки будут наблюдаться в направлениях, определяемых условием (5.21) для одной щели:
Если дифракционная решетка состоит из N щелей (современные решетки, применяемые в приборах для спектрального анализа, имеют до 200 000 штрихов, и период d = 0.8 мкм, то есть порядка 12 000 штрихов на 1 см), то условием главных минимумов является, как и в случае двух щелей, соотношение (5.41), условием главных максимумов — соотношение (5.40), а условие дополнительных минимумов имеет вид
Положение главных максимумов зависит от длины волны l. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разлагаются в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный — наружу. Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как спектральная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, наоборот, сильнее отклоняет красные лучи.
Важной характеристикой всякого спектрального прибора является разрешающая способность.
Разрешающая способность спектрального прибора — это безразмерная величина
Дифракционная решетка. Постоянная и период решетки. Использование в спектроскопии
Дифракционная решетка часто используется для определения спектра падающего на нее света, поскольку она позволяет расщеплять его на отдельные цвета. В данной статье рассмотрим, что такое дифракционная решетка, постоянная и период ее, и приведем пример решения задачи с использованием этого оптического прибора.
Явление дифракции
Суть его заключается в изменении направления распространения волны, когда она встречает на своем пути препятствие. Результат дифракции хорошо различим, если размеры препятствия сравнимы с длиной волны или меньше нее. Дифрагированная волна способна проникать в области за препятствием, куда она не смогла бы попасть, если бы двигалась вдоль прямой.
Вам будет интересно: Корневая система. Как образуются придаточные корни
На рисунке ниже приведен пример дифракции морской волны.
Видно, как прямой фронт волны после прохождения препятствия приобретает форму окружности.
Математическое описание дифракции осуществляется с использованием принципа Гюйгенса-Френеля, который гласит, что каждая точка волнового фронта является источником вторичной волны некоторой интенсивности.
Дифракция часто сопровождается интерференцией. Благодаря этим двум явлениям можно наблюдать так называемые дифракционные картины.
Дифракционная решетка
Это решетка представляет собой прозрачную пластинку, на которую нанесены непрозрачные штрихи с определенным периодом. Когда свет проходит через такую пластинку, то она вносит периодическое возмущение в его волновой фронт. В результате возникает ряд вторичных источников, которые испускают когерентные волны. В результате интерференции когерентные волны образуют на экране совокупность максимумов и минимумов, то есть дифракционную картину.
Описанная выше решетка называется проходящей или прозрачной. Существует также отраженная дифракционная решетка, которая представляет собой совокупность периодических бороздок, нанесенных на гладкую поверхность материала. Примером этого вида решетки является DVD-диск.
Уравнение решетки
В приближении дальнего поля (дифракция Фраунгофера) уравнение для решетки выглядит следующим образом:
Приведенная формула непосредственно следует из условия интерференционного максимума. В лабораторных работах ее используют для определения либо постоянной дифракционной решетки, когда λ известна, либо длины волны, когда d известен.
Использование дифракционной решетки в спектроскопии
Приведенное выше уравнение решетки позволяет сделать вывод, что углы θm, в которых появляются максимумы, зависят от длины волны. Чем больше она, тем больше эти углы (длинные волны лучше дифрагируют, чем короткие). Это означает, что если на решетку направить белый свет, то она его разложит на ряд цветов подобно дисперсионной призме. Причем последовательность цветов, начиная от центра (m=0), будет идти от фиолетового к красному.
Каждый максимум для соответствующего порядка дифракции и белого света будет представлять собой «радугу». Единственным максимумом, который всегда будет белым, является центральный или нулевой (m=0).
Явление разложения белого света на отдельные составляющие позволяет использовать дифракционную решетку в спектроскопии. Например, пропуская свет от далекой галактики через решетку, а затем анализируя полученный спектр, можно с достоверностью сказать, какие элементы присутствуют в галактике, какая у них температура, с какой скоростью движется эта галактика относительно нас (в последнем случае учитывается эффект Доплера).
Пример решения задачи
Покажем, как пользоваться уравнением решетки, на примере решения простой задачи. Пусть постоянная дифракционной решетки равна 300 штрихов на 1 мм. Необходимо определить, при каком угле будет наблюдаться максимум первого порядка для фиолетовой (400 нм) и для красной (700 нм) волн.
Учитывая, что число штрихов N обратно пропорционально периоду d, перепишем уравнение решетки в виде:
Угол для первого максимума равен:
Подставляем данные в единицах СИ в это выражение, получаем:
Для фиолетового: θ1 = arcsin(400*10-9*300*103) = 6,89o.
Для красного: θ1 = arcsin(700*10-9*300*103) = 12,12o.
Если экран поставить на расстоянии 1 метра от решетки, тогда на нем красная и фиолетовая полосы для первого порядка дифракции будут находиться на расстоянии около 9 см друг от друга.
Дифракция света.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: дифракция света, дифракционная решётка.
Пусть, например, плоская волна падает на экран с достаточно узкой щелью (рис. 1 ). На выходе из щели возникает расходящаяся волна, и эта расходимость усиливается с уменьшением ширины щели.
Рис. 1. Дифракция на щели |
Вообще, дифракционные явления выражены тем отчётливей, чем мельче препятствие. Наиболее существенна дифракция в тех случаях, когда размер препятствия меньше или порядка длины волны. Именно такому условию должна удовлетворять ширина щели на рис. 1.
Так, на рис. 2 изображена дифракционная картина, полученная в результате прохождения лазерного луча сквозь небольшое отверстие диаметром 0,2мм.
Рис. 2. Дифракция лазерного луча на отверстии |
Напоминает интерференцию, не правда ли? Это она и есть; данные кольца являются интерференционными максимумами и минимумами. Какие же волны тут интерферируют? Скоро мы разберёмся с этим вопросом, а заодно и выясним, почему вообще наблюдается дифракция.
Опыт Юнга.
Всякий эксперимент с интерференцией света содержит некоторый способ получения двух когерентных световых волн. В опыте с зеркалами Френеля, как вы помните, когерентными источниками являлись два изображения одного и того же источника, полученные в обоих зеркалах.
Но если Солнце является чрезмерно «большим», то нужно искусственно создать точечный первичный источник. С этой целью в опыте Юнга использовано маленькое предварительное отверстие (рис. 3 ).
Рис. 3. Схема опыта Юнга |
Томас Юнг осуществил этот эксперимент, измерил ширину интерференционных полос, вывел формулу и с помощью этой формулы впервые вычислил длины волн видимого света. Вот почему этот опыт вошёл в число самых знаменитых в истории физики.
Принцип Гюйгенса–Френеля.
Напомним формулировку принципа Гюйгенса: каждая точка, вовлечённая в волновой процесс, является источником вторичных сферических волн; эти волны распространяются от данной точки, как из центра, во все стороны и накладываются друг на друга.
Но возникает естественный вопрос: а что значит «накладываются»?
В таком виде принцип Гюйгенса не давал ответа на вопрос, почему в процессе распространения волны не возникает волна, идущая в обратном направлении. Не объяснёнными оставались и дифракционные явления.
Модификация принципа Гюйгенса состоялась лишь спустя 137 лет. Огюстен Френель заменил вспомогательные геометрические сферы Гюйгенса на реальные волны и предположил, что эти волны интерферируют друг с другом.
Принцип Гюйгенса–Френеля. Каждая точка волновой поверхности служит источником вторичных сферических волн. Все эти вторичные волны являются когерентными ввиду общности их происхождения от первичного источника (и, стало быть, могут интерферировать друг с другом); волновой процесс в окружающем пространстве есть результат интерференции вторичных волн.
Идея Френеля наполнила принцип Гюйгенса физическим смыслом. Вторичные волны, интерферируя, усиливают друг друга на огибающей своих волновых поверхностей в направлении «вперёд», обеспечивая дальнейшее распространение волны. А в направлении «назад» происходит их интерференция с исходной волной, наблюдается взаимное гашение, и обратная волна не возникает.
В частности, свет распространяется там, где вторичные волны взаимно усиливаются. А в местах ослабления вторичных волн мы будем видеть тёмные участки пространства.
Принцип Гюйгенса–Френеля выражает важную физическую идею: волна, удалившись от своего источника, в дальнейшем «живёт своей жизнью» и уже никак от этого источника не зависит. Захватывая новые участки пространства, волна распространяется всё дальше и дальше вследствие интерференции вторичных волн, возбуждённых в различных точках пространства по мере прохождения волны.
Как принцип Гюйгенса–Френеля объясняет явление дифракции? Почему, например, происходит дифракция на отверстии? Дело в том, что из бесконечной плоской волновой поверхности падающей волны экранное отверстие вырезает лишь маленький светящийся диск, и последующее световое поле получается в результате интерференции волн вторичных источников, расположенных уже не на всей плоскости, а лишь на этом диске. Естественно, новые волновые поверхности теперь не будут плоскими; ход лучей искривляется, и волна начинает распространяться в разных направлениях, не совпадающих с первоначальным. Волна огибает края отверстия и проникает в область геометрической тени.
Дифракционная решётка.
Рис. 4. Дифракционная решётка |
Дифракционная решётка изготавливается с помощью так называемой делительной машины, которая наносит штрихи на поверхность стекла или прозрачной плёнки. При этом штрихи оказываются непрозрачными промежутками, а нетронутые места служат щелями. Если, например, дифракционная решётка содержит 100 штрихов на миллиметр, то период такой решётки будет равен: d= 0,01 мм= 10 мкм.
Сперва мы посмотрим, как проходит сквозь решётку монохроматический свет, т. е. свет со строго определённой длиной волны. Отличным примером монохроматического света служит луч лазерной указки длина волны около 0,65 мкм).
На рис. 5 мы видим такой луч, падающий на одну из дифракционных решёток стандартного набора. Щели решётки расположены вертикально, и на экране за решёткой наблюдаются периодически расположенные вертикальные полосы.
Рис. 5. Дифракция лазерного луча на решётке |
Теория дифракционной решётки весьма сложна и во всей своей полноте оказывается далеко за рамками школьной программы. Вам следует знать лишь самые элементарные вещи, связанные с одной-единственной формулой; эта формула описывает положения максимумов освещённости экрана за дифракционной решёткой.
Рис. 6. Дифракция на решётке |
Интерференционные максимумы наблюдаются в тех случаях, когда разность хода равна целому числу длин волн:
Формула (1) позволяет найти углы, задающие направления на максимумы:
Этот угол задаёт направления на максимумы первого порядка. Их два, и расположены они симметрично относительно центрального максимума. Яркость в максимумах первого порядка несколько меньше, чем в центральном максимуме.
Аналогично, при имеем угол:
Он задаёт направления на максимумы второго порядка. Их тоже два, и они также расположены симметрично относительно центрального максимума. Яркость в максимумах второго порядка несколько меньше, чем в максимумах первого порядка.
Рис. 7. Максимумы первых двух порядков |
Вообще, два симметричных максимума k-го порядка определяются углом:
С помощью дифракционной решётки можно измерить неизвестную длину волны. Направляем пучок света на решётку (период которой мы знаем), измеряем угол на максимум первого
порядка, пользуемся формулой (1) и получаем:
Дифракционная решётка как спектральный прибор.
Предположим, что на дифракционную решётку падает белый свет. Давайте вернёмся к формуле (2) и подумаем, какие выводы из неё можно сделать.
Положение центрального максимума ( ) не зависит от длины волны. В центре дифракционной картины сойдутся с нулевой разностью хода все монохроматические составляющие белого света. Поэтому в центральном максимуме мы увидим яркую белую полосу.
Рис. 8. Дифракция белого света на решётке |
Спектральное разложение белого света, даваемое дифракционной решёткой, проще всего наблюдать, глядя на обычный компакт-диск (рис. 9 ). Оказывается, дорожки на поверхности диска образуют отражательную дифракционную решётку!