Что называется периодом функции
Периодическая функция
Периодическая функция — это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого числа T (отличного от нуля).
Функция y=f(x) называется периодической, если существует такое число T≠0, что для любого x из области определения этой функции выполняются равенства:
Число T называют периодом функции y=f(x).
Из определения следует, что значения x-T и x+T также входят в область определения функции y=f(x).
Свойства периодических функций
1) По определению периодической функции для любого x из области определения y=f(x) если T — период функции, то f(x-T)= f(x)=f(x+T).
2) Для любого x из области определения y=f(x) если T1 — период функции, то
Так как T2 также является периодом функции y=f(x), то для аргумента x-T1
Следовательно, число T1+T2 является периодом функции y=f(x).
3) Это свойство непосредственно вытекает из свойства 2, если T взять в качестве слагаемого n раз.
4) Если T — период функции f(x), то для аргумента kx+b
Значит число T/k — период функции f(kx+b).
5) Эти свойства следуют непосредственно из определения.
Например, для суммы f(x) и g(x):
Из свойства 3 следует, что каждая периодическая функция имеет бесконечно много периодов.
Если среди всех периодов функции y=f(x) существует наименьший положительный период, то его называют главным (или основным) периодом функции.
Примеры периодических функций
1) Поскольку для любого x выполняются равенства
то функции y=sin x и y=cos x являются периодическими с периодом T=2π.
2) Так как для любого x из области определения функции y=tg x выполняется равенство
tg (x-π)=tg x =tg (x-π), то y=tg x — периодическая функция с периодом T=π.
Аналогично, y=ctg x — периодическая функция с периодом T=π.
3) Так как для любого действительного числа x и любого рационального числа k выполняется равенство D(x+k)=D(x), то функция Дирихле D(x) — периодическая с периодом T=k, где k∈Q, k≠0.
Поскольку k — любое рациональное число, невозможно его указать наименьшее положительное значение. Следовательно, функция Дирихле не имеет главного периода.
4) Рассмотрим частный случай линейной функции y=b, b — действительное число (b∈R). Эта функция определена на множестве действительных чисел и при любых значениях аргумента принимает единственное значение y=b, то есть для любого действительного числа m (m∈R), y(x)=y(x+m)=b.
Значит y=b — периодическая функция с периодом T=m, где m∈R, m≠0.
Так как m — любое действительное число, оно не имеет наименьшего положительного значения. Поэтому функция y=b не имеет главного периода.
5) Так как для любого действительного x и любого целого k выполняется равенство
Наименьшим положительным целым числом является единица. Следовательно, T=1 — главный период функции y=
Главный период функций y=sin x и y=cos x T=2π.
Главный период функций y=tg x и y=ctg x T=π.
Если T — период функции y=sin x, то sin (x-2π)=sin x = sin (x-2π) для любого x.
То есть любой период функции y=sin x имеет вид 2πn, n∈Z.
Наименьшее положительное значение это выражение принимает при n=1 и оно равно T=2π.
Таким образом, 2π — главный период функции y=sin x.
Аналогично доказываются утверждения о главном периоде функций y=cos x, y=tg x и y=ctg x.
Из 4-го свойства периодических функций непосредственно следует, что для функций y=sin (kx+b) и y=cos (kx+b) (k≠0) наименьший положительный период
а для функций y=tg (kx+b) и y=ctg (kx+b) (k≠0) наименьший положительный период
График периодической функции повторяется через промежутки длиной T (на оси Ox).
Дана часть графика
промежутке длиной T.
Чтобы построить график функции, выполняем параллельный перенос этой части графика вдоль оси Ox на ±T, ±2T,… :
Что называется периодом функции
Период функции – положительное число Т, обладающее двумя свойствами:
а) вместе с числом х в область определения данной функции входят также числа х + Т и х – Т;
б) для любого значения х из области определения функции справедливы равенства f(x – T) = f(x) = f(x + T).
Наименьшее из чисел Т, обладающих указанными свойствами, называется основным периодом функции.
Часто основной период функции называют просто ее периодом.
Функция, имеющая период, называется периодической. В школьной программе наиболее часто из периодических функций встречаются основные тригонометрические функции.
Очевидно, что если Т – период функции, то при любом натуральном (т.е. целом положительном) значении k число kT также будет ее периодом. Точнее, если периодическая функция у = f(x) непрерывна на каком-нибудь интервале и не является на нем константой (т.е. постоянной), то для нее существует наименьший период Т; тогда любой период этой функции имеет вид kT, где k – натуральное число.
Для построения графика периодической функции достаточно построить его на любом отрезке длиной в (основной) период, тогда весь график получится сдвигом построенной части вправо и влево на целое число периодов.
Как определить периодичность функции
Если F(x) — функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.
Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.
Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.
Если F(x) — периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) — тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.
Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C — нет.
Если F1(x) и F2(x) — периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 — рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй — 15, то период их суммы будет равен НОК (12, 15) = 60.
Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.
Уроки математики и физики для школьников и родителей
суббота, 4 сентября 2021 г.
Урок 5. Периодичность тригонометрических функций
Из этого определения сразу следует, что если Т – период функции
– также периоды функций. Значит у периодической функции бесконечно много периодов.
Чаще всего (но не всегда) среди множества положительных периодов функции можно найти наименьший. Его называют основным периодом .
График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.
у = х – [х] , где [х] – целая часть числа. Если к произвольному значение аргумента этой функции добавить 1 , то значение функции от этого не изменится :
Следовательно, при любом значении х
sin (α + 360 ° ) = sin α
Таким образом, функции sin α и cos α от прибавления к аргументу α одного полного оборота ( 2π или 360 ° ) не меняют своих значений.
где k – любое целое число.
Следовательно, функции sin α и cos α – периодические.
Наименьшее положительное число, от прибавления которого к любому допустимому значению аргумента не изменяется значение функции, называется периодом функции.
В самом деле, пусть α – произвольный угол, составленный с осью Ох подвижным радиусом ОМ единичной окружности.
отсюда следует, что значения tg α и с tg α не изменяются, если к углу α прибавить любое число полуоборотов:
где k – любое целое число.
вычисляются по формуле
равен наименьшему числу, при делении которого на T 1 и T 2 получаются целые числа.
Найти период функции
не существует, так как такого числа, при делении которого на 2π и на 2 получались бы целые числа, нет.
Периода не существует.
Доказать следующее утверждение :
Так как тангенс – периодическая функция с минимальным периодом 20 ∙ 180 ° , то получим :
Доказать следующее утверждение :
Так как косинус – чётная и периодическая функция с минимальным периодом 2π , то получим :
сos (–13π) = сos 13π = сos (π + 6 ∙ 2π) = сos π = –1.
Доказать следующее утверждение :
Так как синус – нечётная и периодическая функция с минимальным периодом 20 ∙ 360 ° , то получим :
Найти основной период функции
Пусть Т основной период функции, тогда:
так как 2 πk период синуса, то получим :
sin (7х + 7 t ) = sin (7х + 2 πk ),
Найти основной период функции
Пусть Т основной период функции, тогда:
со s 0,3х = со s 0,3(х + t ) = со s (0,3х + 0,3 t )
так как 2 πk период косинуса, то получим :
Найти период функции :
y = 5 sin 2 x + 2 ctg 3х.
Наименьшее число, при делении которого на
Найти период функции :
Находим периоды слагаемых. Период функции
Очевидно, что период заданной функции равен
Найти период функции :
Периода у заданной функции не существует, так как нет такого числа, при делении которого на 2 и на π одновременно получались бы целые числа.
Найти период функции :
Приведём к общему знаменателю периоды :
Тогда наименьшее общее кратное (НОК) будет :
Теперь найдём период заданной функции :
Периодические функции
Функция f (x) называется периодической с периодом T ≠ 0, если выполняются два условия:
· если , то x + T и x – T также принадлежат области определения D (f (x));
· для любого выполнено равенство
Поскольку то из приведенного определения следует, что f (x – T) = f (x).
Если T – период функции f (x), то очевидно, что каждое число nT, где , n ≠ 0, также является периодом этой функции.
Наименьшим положительным периодом функции называется наименьшее из положительных чисел T, являющихся периодом данной функции.
| |
График 1.3.4.1. График периодической функции |
График периодической функции обычно строят на промежутке [x0; x0 + T), а затем повторяют на всю область определения.
Хорошим примером периодических функций могут служить тригонометрические функции y = sin x, y = cos x (период этих функций равен 2π), y = tg x (период равен π) и другие. Функция y = const также является периодической. Для нее периодом является любое число T ≠ 0.
|
Рисунок 1.3.4.1. Не следует думать, что периодическими бывают только тригонометрические функции. Функция y = [x], где [x] – целая часть числа x (наибольшее целое число, не превосходящее x) позволяет определить функцию y = |
В заключение отметим свойства периодических функций.
· Если f (x) – периодическая функция с периодом T, то функция g (x) = A · f (kx + b), где k ≠ 0 также является периодической с периодом .
· Пусть функции f1 (x) и f2 (x) определены на всей числовой оси и являются периодическими с периодами T1 > 0 и T2 > 0. Тогда если то функция
периодическая с периодом T, равным наименьшему общему кратному чисел
Монотонность функций
Функция f (x) называется возрастающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 f (x2).
|
Рисунок 1.3.5.1. Промежутки возрастания и убывания функции. |
На показанном на рисунке графике функция y = f (x), возрастает на каждом из промежутков [a; x1) и (x2; b] и убывает на промежутке (x1; x2). Обратите внимание, что функция возрастает на каждом из промежутков [a; x1) и (x2; b], но не на объединении промежутков
Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.
Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.
Действительно, если x1 0) и f + c также возрастают, а функция cf (c n также возрастает.
· Композиция g (f (x)) возрастающих функций f и g также возрастает.
Аналогичные утверждения можно сформулировать и для убывающей функции.
|
Модель 1.9. Свойства функции. |
Точка a называется точкой максимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≥ f (x).
Точка a называется точкой минимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≤ f (x).
Точки, в которых достигается максимум или минимум функции, называются точками экстремума.
В точке экстремума происходит смена характера монотонности функции. Так, слева от точки экстремума функция может возрастать, а справа – убывать. Согласно определению, точка экстремума должна быть внутренней точкой области определения.
Если для любого (x ≠ a) выполняется неравенство f (x) ≤ f (a)
то точка a называется точкой наибольшего значения функции на множестве D:
|
Если для любого (x ≠ b) выполняется неравенство f (x) > f (b)
то точка b называется точкой наименьшего значения функции на множестве D.
|
Точка наибольшего или наименьшего значения может быть экстремумом функции, но не обязательно им является.
Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.
| |
График 1.3.5.1. Функция, ограниченная сверху. |
| |
График 1.3.5.2. Функция, ограниченная снизу. |
| |
График 1.3.5.3. Функция, ограниченная на множестве D. |
Если существует число C такое, что для любого выполняется неравенство f (x) ≤ C, то функция f называется ограниченной сверху на множестве D.
Если существует число c такое, что для любого выполняется неравенство f (x) ≥ c, то функция f называется ограниченной снизу на множестве D.
Функция, ограниченная и сверху, и снизу, называется ограниченной на множестве D. Геометрически ограниченность функции f на множестве D означает, что график функции y = f (x), лежит в полосе c ≤ y ≤ C.
Если функция не является ограниченной на множестве, то говорят, что она не ограничена.