Что называется материальной точкой физика 9 класс кратко
Вопросы § 1
Физика А.В. Перышкин
1. Что называется материальной точкой?
Под материальной точкой в физике понимается тело, размерами которого в условиях данной задачи можно пренебречь. Материальная точка обладает определенной массой, но имеет нулевые (очень малые) размеры.
2. С какой целью используется понятие «материальная точка»?
Понятие материальной точки используется для упрощения условий и решений задач. Если пренебречь размерами реального тела, то нет необходимости рассматривать движение тела при его движении вокруг своей оси (мяч в полете) или движение каких-то частей тела (колеса автомобиля), если нас интересует с какой скоростью движется тело.
3. В каких случаях движущееся тело обычно рассматривают как материальную точку?
В данном случае движущееся тело можно рассматривать как материальную тоску, если его размеры намного меньше расстояния на которое оно перемещается.
4. Приведите пример, показывающий, что одно и то же тело в одной ситуации можно считать материальной точкой, а в другой — нет.
Если рассматривать, например, движение автомобиля при его перемещении из города А в город Б, то в данном случае, при определении средней скорости движения автомобиля его можно рассматривать как материальную точку, однако если нас интересует движение автомобиля более подробно, то окажется, что при движении автомобиля, например передние и задние колеса из за неровностей дороги двигаются по разному (не синхронно).
5. В каком случае положение движущегося тела можно задать с помощью одной координатной оси?
Если тело движется прямолинейно.
6. Что такое система отсчёта?
Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени, по отношению к которым рассматривается движение материальных точек или тел.
Материальная точка. Система отсчета
Урок 1. Физика 9 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Материальная точка. Система отсчета»
Неотъемлемой частью нашей жизни является движение. Движутся люди, автомобили, самолёты, космические корабли и планеты. Движутся молекулы, атомы, ионы и электроны. В окружающем нас мире все непрерывно изменяется. Как говорил древнегреческий философ Гераклит: «Все течёт, все изменяется. И невозможно дважды войти в одну и ту же реку».
Наиболее простой формой всех изменений является механическое движение. Механическое движение — это изменение положения одних тел относительно других в пространстве с течением времени.
А наука о закономерностях механического движения и причинах, вызвавших это движение, называется механикой.
Механику обычно разделяют на два раздела: кинематику, которая отвечает на вопрос, как движутся тела; и динамику, которая выясняет причины и проясняет, почему тела движутся именно так, а не иначе.
Изучение механики начинается с кинематики, так как понятия кинематики лежат в основе всей физики.
Кинематика — это раздел механики, который изучает движение тел без учёта причин, вызвавших это движение.
Основная задача кинематики заключается в нахождении положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.
В седьмом классе вы изучали самый простой вид движения —прямолинейное. В действительности движение тел может быть очень сложным: понаблюдайте за самолётом, который выполняет фигуры высшего пилотажа…
Каким образом кинематика может описать такие сложные движения?
Дело в том, что кинематика позволяет представить любое сложное движение, как состоящее из трёх основных.
Все вы знаете, что любое тело в каждый момент времени обладает некоторой геометрической формой, определённым образом ориентировано в пространстве и занимает в нем некоторое место. Проведём простой опыт с обыкновенным ластиком. Его можно изогнуть, то есть изменить его форму. Его можно повернуть, то есть по-другому сориентировать относительно стола. И, наконец, ластик можно перенести в другое место без изменения формы и ориентации в пространстве.
Значит, и форма, и ориентация в пространстве, и местоположение тела с течением времени могут изменяться. И каждому из этих изменений соответствует один из трёх основных видов механического движения — деформация…, вращательное движение… и поступательное движение…
С деформацией тела вы знакомы. Напомним, что это процесс изменения формы и (или) объёма тела. В результате этого процесса изменяется расстояние между точками тела.
Вращательное движение тела — это движение, при котором происходит изменение ориентации тела в пространстве (проще говоря, поворот тела).
Ну а перемещение тела без деформирования и поворота называется поступательным движением. При таком движении любая прямая, мысленно проведённая через любые две точки тела, остаётся параллельной самой себе.
Во многих задачах деформированием тела можно пренебречь. В таких случаях пользуются моделью абсолютно твёрдого тела — это тело, у которого расстояние между любыми его точками не меняется.
Если же в задаче, помимо деформации, можно пренебречь и вращением тела, то остаётся рассмотреть лишь его поступательное движение. А для таких задач достаточно изучить движение только одной точки тела, то есть использовать модель материальной точки.
Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.
Слова «в данных условиях» означают, что одно и то же тело при одних его движениях можно считать материальной точкой, при других — нет. Например, при изучении движения планет нашей Солнечной системы вокруг Солнца, их можно считать материальными точками, так как их размеры очень малы, по сравнению с расстояниями, которые они проходят.
Однако при рассмотрении задач, связанных с суточным вращением планеты, считать её материальной точкой нельзя, так как результат будет зависеть от размеров планеты, скорости движения её различных точек и так далее. Например, в Москве солнце встаёт на 7 часов раньше, чем в Нью-Йорке.
Поэтому, чтобы тело можно было принять за материальную точку, должно выполняться одно из трёх условий:
· тело движется поступательно;
· размеры тела много меньше расстояния, которое оно проходит;
· размеры тела много меньше расстояния до тела отсчёта.
Напомним, что тело отсчёта — это тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.
Вам известно, что одно и то же тело может двигаться относительно одних тел и одновременно оставаться неподвижным для других. Так пилот самолёта неподвижен относительно самолёта, но движется вместе с ним относительно земли. Таким образом, когда говорят о движении какого-либо тела, необходимо указывать тело, относительно которого это движение рассматривается.
Положение тела в пространстве определяется с помощью координат. Например, рассмотрим движения локомотива по железной дороге. Его положение в любой момент времени можно задать одной координатой, например, Х. Для этого с телом отсчёта (например, это может быть дерево) связывается система координат, состоящая из одной координатной оси.
При изучении движения тела по плоскости, например, мела по школьной доске, одной координаты уже недостаточно. Поэтому, для описания такого движения следует использовать две взаимно перпендикулярные координатные оси и в каждый момент времени знать две координаты движущегося тела.
Когда же рассматривается движение тела в пространстве, например, движение вертолёта, то система координат, связанная с телом отсчёта, будет состоять из трёх взаимно перпендикулярных координатных осей: OX, OY, OZ.
А так, как при движении тела его координаты с течением времени изменяются, то необходимо иметь прибор для измерения времени.
Тело отсчёта, снабжённое устройствами для определения положения других тел и для измерения времени, называется системой отсчёта.
Мы будем использовать систему отсчёта, которая состоит из тела отсчёта, жёстко связанной с ним системы координат и часов.
Конечно, во многих случаях мы не можем непосредственно измерить координаты движущегося тела в любой момент времени. Например, мы не можем расположить линейку и расставить людей с часами вдоль многокилометрового пути движущегося мотоцикла, плывущего по морю корабля, летящего самолёта или космической ракеты, движение которых мы наблюдаем. Тем не менее знание законов физики позволяет нам определить координаты тел, движущихся в различных системах отсчёта.
А теперь давайте решим с вами одну небольшую задачку. Можно ли принять Землю за материальную точку при расчёте: расстояния от Земли до Солнца; пути, пройденного Землёй по орбите вокруг Солнца за месяц; длины экватора и скорости движения Земли по орбите вокруг Солнца?
Решение этой задачи не сложное. Здесь главное вспомнить, в каких случаях тело можно принимать за материальную точку, а в каких нет. И так, тело можно принять за материальную точку, если тело движется поступательно; если размеры тела много меньше расстояния, которое оно проходит; и, если размеры тела много меньше расстояния до тела отсчёта.
Рассмотрим случай а) более подробно. Для это проверим выполнение выше названных условий. Согласно первому условию, тело должно двигаться поступательно. Для нашего случая он не выполняется, так как о движении Земли в условии задачи ничего не говорится.
Второе условие материальной точки также не выполняется, так как мы не знаем расстояние, пройденное Землёй.
По третьему условию размеры тела должны быть намного меньше расстояния до тела отсчёта. В нашем случае, тело отсчёта — это Солнце. Среднее расстояние от Земли до Солнца составляет 149,6 миллионов километров, а средний радиус нашей планеты всего 6371 километр, что, конечно же, намного меньше среднего расстояния до Солнца.
Значит, в примере а) Землю можно принять за материальную точку, так как выполняется третье условие.
Далее рассуждая аналогично получим, что в примере б) Землю можно принять за материальную точку, так как её размеры много меньше расстояния, которое она проходит по орбите за месяц.
В примере в) Землю нельзя считать материальной точкой, так как при расчёте длины экватора Земли нельзя пренебречь её размерами.
И наконец в примере г) Землю можно считать материальной точкой, так как размеры Земли во много раз меньше среднего расстояния до Солнца.
ВОПРОСЫ
1. Обладает ли материальная точка массой? Имеет ли она размеры?
Под материальной точкой в физике понимается тело, размерами которого в условиях данной задачи можно пренебречь. Материальная точка обладает определенной массой, но имеет нулевые (очень малые) размеры.
2. Материальная точка- это реальный объект или абстрактное понятие?
Материальная точка— абстрактное понятие, т.к. в природе все тела обладают определёнными размерами.
3. С какой целью используется понятие «материальная точка»?
Понятие материальной точки используется для упрощения условий и решений задач. Если пренебречь размерами реального тела, то нет необходимости рассматривать движение тела при его движении вокруг своей оси (мяч в полёте) или движение каких- то частей тела (колеса автомобиля), если нас интересует с какой скоростью движется тело.
4. В каких случаях движущееся тело обычно рассматривают как материальную точку?
В данном случае движущееся тело можно рассматривать как материальную точку, если его размеры намного меньше расстояния на которое оно перемещается.
5. Приведите пример, показывающий, что одно и то же тело в одной ситуации можно считать материальной точкой, а в другой- нет.
Если рассматривать, например, движение автомобиля, при его перемещении из города А в город Б, то в данном случае, при определении средней скорости движения автомобиля его можно рассматривать как материальную точку, однако если нас интересует движение автомобиля более подробно, то окажется, что при движении автомобиля, например передние и задние колёса из-за неровностей дороги двигаются по разному (не синхронно).
6. При каком движении тела его можно рассматривать как материальную точку даже в том случае, если проходимые им расстояния сравнимы с его размерами?
Если тело движется поступательно.
7. Что называется материальной точкой?
Материальная точка— это абстрактное понятие обозначающее тело, размеры которого не играют роли в условиях рассматриваемой задачи.
8. В каком случае положение движущегося тела можно задать с помощью одной координатной оси?
Если тело движется прямолинейно.
9. Что такое система отсчёта?
Система отсчёта- это тело отсчёта, связанная с ним система координат и прибор для измерения времени, по отношению к которым рассматривается движение материальных точек или тел.
УПРАЖНЕНИЯ
1. Можно ли считать автомобиль материальной точкой при определении пути, который он прошёл за 2 часа, двигаясь со средней скоростью, равной 80 км/ч? при обгоне им другого автомобиля?
2. Самолёт совершает перелёт из Москвы во Владивосток. Может ли рассматривать самолёт как материальную точку диспетчер, наблюдающий за его движением? пассажир этого самолёта?
3. Когда говорят о скорости машины, поезда и других транспортных средств, тело отсчёта обычно не указывают. Что подразумевают в этом случае под телом отсчёта?
Под телом отсчёта, в данном случае, обычно подразумевают поверхность Земли.
4. Мальчик стоял на земле и наблюдал, как его младшая сестра каталась на карусели. После катания девочка сказала брату, что и он сам, и дома, и деревья быстро проносились мимо неё. Мальчик же стал утверждать, что он вместе с домами и деревьями, был неподвижен, а двигалась сестра. Относительно каких тел отсчёта рассматривали движение девочка и мальчик? Объясните кто прав в споре.
Оба правы. Мальчик выбрал систему отсчёта относительно себя (он был неподвижен), а девочка относительно себя (она была на качелях).
5. Относительно какого тела отсчёта рассматривают движение, когда говорят:
а) скорость ветра равна 5 м/с?
б) бревно плывет по течению реки, поэтому его скорость равна нулю;
в) скорость плывущего по реке дерева равна скорости течения воды в реке;
г) любая точка колеса движущегося велосипеда описывает окружность;
д) Солнце утром восходит на востоке, в течение дня движется по небу, а вечером заходит на западе?
а) относительно поверхности Земли; б) относительно текущей воды; в) относительно поверхности Земли; г) относительно центра (оси) колеса; д) относительно поверхности Земли.
Материальная точка
Всего получено оценок: 201.
Всего получено оценок: 201.
Одним из базовых понятий в механике является понятие материальной точки. Большинство законов кинематики и динамики описывают движение и взаимодействие материальных точек. Рассмотрим это понятие более подробно.
Важные характеристики объектов
Все физические законы предназначены для описания явлений в нашем обычном мире, в трехмерном пространстве. И все законы относятся к физическим объектам, которые имеют некоторые размеры, форму, массу и ряд других свойств.
Рис. 1. Физические объекты.
Однако, каждый закон описывает лишь какую-то одну сторону явления. А для ее описания большинство характеристик объекта оказываются лишними. Явление будет происходить совершенно одинаково вне зависимости от них. Например, для описания работы весов не имеет значение, какая у взвешиваемых предметов форма. Форма объектов также не имеет значения для описания равномерного прямолинейного движения.
Таким образом, в физике довольно часто возникает ситуация, когда законы и описания относятся только к важным характеристикам описываемых объектов и явлений, все остальные характеристики не влияют на поведение объектов и просто не рассматриваются.
Понятие материальной точки
При описании движения предметов необходимо задавать их положение в пространстве. При этом очень часто (но не всегда) оказывается, что информация о форме объекта оказывается излишней. Достаточно описывать движение лишь одной точки объекта, остальные точки движутся точно так же. Поэтому большинство законов о движении тел описывают движение только одной точки предмета.
Эта точка и называется «материальной точкой».
Примерами материальных точек в природе могут являться планеты при описании их движения вокруг Солнца, отдельные пешеходы или автомобили в движении, отдельные молекулы газа и многое другое.
Рис. 2. Материальная точка в природе.
Один и тот же объект, в зависимости от условий описываемого явления может быть материальной точкой, а может и не быть. Если описывается лобовое столкновение двух шаров вдоль прямой, после которого оба они отскакивают вдоль той же прямой – то шары можно считать материальными точками. Если же эти же шары с теми же скоростями сталкиваются не «в лоб», а «по касательной», и отскакивают по разным прямым – то шары нельзя считать материальными точками, необходимо учитывать их размеры.
Характеристики материальной точки
Материальная точка, точно так же, как и геометрическая точка – это минимальная часть объекта в пространстве, для которой можно указать положение, относительно начала координат.
Материальной точкой можно считать любой предмет, размерами и формой которого можно пренебречь, исходя из условий задачи. Например, когда путь объекта значительно больше его размера. Путь объекта может быть и небольшим, но если объект не меняет формы и ориентации в пространстве, а все его точки перемещаются одинаково – то его тоже можно считать материальной точкой.
Фактически, физическая материальная точка представляет собой модель предмета, аналог геометрической точки, с одной важной поправкой: материальная точка имеет массу. Когда описывается лишь движение объектов – то масса в этом случае тоже оказывается излишней. Но, если описывается взаимодействие, массой пренебречь уже нельзя.
Таким образом, материальной точкой называют объекты, размеры и форма которых по условиям задачи не важны. Характеристики материальной точки включают координаты в пространстве и постоянную массу.
Что мы узнали?
Материальная точка – это объект, для которого определены координаты в пространстве, и который имеет постоянную массу. Всеми остальными характеристиками материальной точки в условиях рассматриваемого явления можно пренебречь.
Основные понятия
Абсолютная шкала температур – температурная шкала, называемая также шкалой Кельвина, нулевая температура в которой соответствует абсолютному нулю (»-273 оС), а каждый градус температуры равен градусу шкалы Цельсия
Агрегатные состояния вещества – состояния одного и того же вещества, переходы между которыми сопровождаются резкими изменениями его физических свойств (например, плотности, удельной теплоёмкости и т.п.); вода, например, может находиться в одном из трёх агрегатных состояниях – твердом, жидком и газообразном
Амперметр – прибор, предназначенный для измерения силы тока
Атмосферное давление – давление воздуха атмосферы на находящиеся в нём тела и на земную поверхность
Анод – положительно заряженный электрод
Атом – мельчайшая частица химического элемента, сохраняющая все его свойства
Атомная единица массы (а. е. м.) – 1/12 массы атома изотопа углерода с массовым числом 12.
Вакуум – разряженный газ, концентрация молекул в котором так мала, что они не сталкиваются друг с другом
Вес тела – сила, с которой это тело, притягиваемое Землёй, действует на горизонтальную опору или растягивает подвес
Внутренняя энергия тела – сумма кинетической энергии теплового движения его атомов и молекул и потенциальной энергии их взаимодействия между собой
Внутреннее сопротивление – сопротивление источника тока
Вольтметр – прибор, предназначенный для измерения напряжения в электрических цепях
Второй закон Ньютона – произведение массы тела на его ускорение равно сумме сил, действующих на это тело
Второй закон термодинамики – невозможен процесс, единственным результатом которого был бы переход количества теплоты от холодного тела к горячему
Газовые законы – зависимости между макроскопическими параметрами газа в изопроцессах
Гравитационная постоянная – G, коэффициент пропорциональности в законе всемирного тяготения, численно равный силе притяжения между двумя точечными телами массой 1 кг, расположенных на расстоянии 1 м друг от друга
Гравитационные силы – силы всемирного тяготения, в результате действия которых все тела притягиваются друг к другу
Двигатели внутреннего сгорания – тепловые двигатели, в которых часть химической энергии сгорающего топлива преобразуется в механическую энергию
Деформация – изменение взаимного расположения точек тела, в результате которого меняется его размеры, форма и объём
Динамика – раздел механики, изучающий причины движения тел
Динамометр – прибор для измерения силы
Диод – двухэлектродный электровакуумный, полупроводниковый или газоразрядный прибор, обладающий односторонней проводимостью
Диффузия – движение частиц вещества, приводящее к его переносу и соответствующим изменениям его концентрации, а также к взаимопроникновению частиц одного вещества в другое
Диэлектрики – вещества, в которых нет свободных зарядов
Закон Авогадро: в равных объёмах идеальных газов при одинаковых давлениях и температурах содержится одинаковое количество вещества
Закон Бойля-Мариотта: при изотермическом процессе произведение давления данной массы газа на его объём не изменяется
Закон всемирного тяготения: любые два тела притягиваются друг к другу с силой, которая прямо пропорциональна массам обоих тел и обратно пропорционально квадрату расстояния между ними
Закон Гей-Люссака: при изобарном процессе отношение объёма данной массы газа к его температуре постоянно
Закон Гука: модуль силы упругости при упругой деформации растяжения (или сжатия) тела прямо пропорционален абсолютному значению изменения его длины
Закон инерции: если на тело не действуют никакие другие тела, то тело будет находиться в покое или двигаться равномерно и прямолинейно
Закон Кулона: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей их зарядов и обратно пропорциональна квадрату расстояния между ними
Закон Ома для полной цепи: сила тока в полной цепи равна отношению электродвижущей силы к суммарному сопротивлению цепи
Законом Ома для участка цепи: сила тока через проводник прямо пропорциональна приложенному напряжению и обратно пропорциональна его сопротивлению
Закон сохранения импульса: суммарный импульс замкнутой системы тел не изменяется
Законом сохранения электрического заряда: в замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной
Заряженные тела – тела, обладающие электрическим зарядом
Идеальный газ – газ, взаимодействие между молекулами которого пренебрежимо мало
Идеальный тепловой двигатель – двигатель, работающий по циклу, состоящему из двух идеальных изотермических и двух идеальных адиабатных процессов, предложенный французским физиком С. Карно
Изобара – график зависимости объёма газа от его температуры при изобарном процессе
Изобарный процесс – изменение состояния газа, происходящее при постоянном давлении
Изопроцессы – процессы, протекающие при неизменном значении одного из макроскопических параметров (давления, объёма или температуры)
Импульс тела – величина, равная произведению массы тела на его скорость
Ионы – электрически заряженные атомы или группы атомов, потерявшие или присоединившие к себе электроны
Ионная проводимость – вид электрической проводимости вещества, при котором носителями свободных зарядов являются ионы
Испарение – образование пара, происходящее на поверхности жидкости
Источник тока – устройство, внутри которого происходит разделение разноимённых электрических зарядов под действием сторонних сил
Инерция – свойство тела сохранять состояние равномерного прямолинейного движения или покоя, когда действующие на него силы отсутствуют или взаимно уравновешены
Кинетическая энергия тела – величина, равная половине произведению массы тела на квадрат его скорости
Кипение – интенсивный процесс перехода жидкости в пар, происходящий в результате образования большого числа пузырьков пара, всплывающих и лопающихся на поверхности жидкости при её нагревании
Коэффициентом полезного действия – отношение работы, совершённой двигателем к количеству теплоты, полученной от нагревателя
Коэффициент упругости (жёсткости) – коэффициент пропорциональности в законе Гука
Макроскопические параметры – давление, объём и температура макроскопического тела, характеризующая его состояние без учёта его молекулярного строения
Масса – отношение модуля силы, действующей на тело, к модулю ускорения, которое это тело получило в результате действия этой силы
Механика – наука об общих законах движения тел
Механическая энергия тела – энергия, связанная с его скоростью и положением относительно других тел, равная сумме кинетической и потенциальной энергий тела
Механическое движение – изменение положения тела в пространстве по отношению к другим телам
Моль – единица измерения количества вещества в системе СИ, равная количеству вещества, содержащегося в 12 г углерода
Молярная масса – отношение массы данного образца вещества к количеству вещества, содержащегося в этом образце
Мощность тока – отношение работы тока за некоторый интервал времени к величине этого интервала
Напряжённость электрического поля – отношение силы, с которой поле действует на заряд в данной его точке, к величине этого заряда
Отрицательный электрический заряд – знак электрического заряда электрона
Пар – вещество в газообразном состоянии
Постоянная (число) Авогадро – NA, число атомов (или молекул), содержащееся в одном моле любого вещества
Постоянная Больцмана – k, физическая постоянная, равная отношению универсальной газовой постоянной к числу Авогадро
Постоянный ток – электрический ток, сила которого не изменяется со временем
Поступательное движение – движение тела, при котором любая прямая, проведённая в этом теле, перемещается параллельно самой себе
Потенциал электрического поля – отношение потенциальной энергии заряда в электрическом поле к величине этого заряда
Потенциальная энергия – энергия, связанная только с относительным расположением тел или их частей (деформацией)
Связанные заряды – заряды, возникающие на поверхности диэлектрика при его поляризации в электрическом поле
Сверхпроводимость – обращение в нуль сопротивления проводника, наблюдаемое у некоторых веществ при охлаждении их ниже определённой (критической) температуры
Сила – количественная мера взаимодействия тел между собой, в результате которого тела приобретают ускорения
Сила Архимеда – направленная вверх сила, действующая на всякое тело, погружённое в жидкость (или газ), и равная весу вытесненной этим телом жидкости (или газа)
Силы трения – силы, препятствующие относительному движению соприкасающихся тел
Сила трения покоя – сила трения между двумя соприкасающимися телами, неподвижными относительно друг друга
Сила тяжести – сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи неё
Температура – физическая величина, характеризующая состояние теплового равновесия системы из двух или нескольких тел; при этом, если тела находятся в тепловом равновесии, то они имеют одну и ту же температуру
Температура нагревателя – максимальная температура, до которой нагревается рабочее тело в тепловом двигателе
Температурный коэффициент сопротивления – коэффициент пропорциональности в зависимости сопротивления от температуры, численно равный относительному изменению сопротивления при нагревании проводника на 1 К
Тепловые двигатели – устройства, преобразующие часть внутренней энергии тел в механическую энергию
Теплообмен (теплопередача) – процесс передачи энергии от одного тела к другому без совершения работы
Термодинамика – раздел физики, изучающий тепловые процессы макроскопических тел без использования характеристик движения и взаимодействия молекул или атомов
Удельная теплоёмкость – величина, численно равная количеству теплоты, которое необходимо передать 1 кг вещества, чтобы поднять его температуру на 1 оС
Удельная теплота плавления – величина, численно равная количеству теплоты, которое необходимо передать 1 кг кристаллического вещества, чтобы превратить его в жидкость той же температуры
Удельная теплота парообразования – величина, численно равная количеству теплоты, которое необходимо передать 1 кг жидкости, чтобы превратить её в пар той же температуры
Физика – наука о природе, изучающая основные характеристики и явления материального мира
Центростремительное ускорение – ускорение тела или точки при равномерном движении по окружности
Шкала Цельсия – температурная шкала, названная в честь А. Цельсия, в которой один градус (оС) равен 1/100 разности температур кипения воды и таяния льда при нормальном атмосферном давлении, а точка таяния льда принята за 0 оС
Электрическая проводимость вещества – способность вещества проводить ток под действием электрического поля
Электрический заряд – одно из свойств материи, определяющее интенсивность электромагнитных взаимодействий между заряженными частицами и телами
Электрические силы – силы, действующие между заряженными частицами и телами
Электрический ток – упорядоченное движение заряженных частиц в проводнике
Электрическое поле – материальный объект, существующий вокруг электрических зарядов и являющийся одной из форм проявления электромагнитного поля
Электродвижущая сила – отношение работы сторонних сил при перемещении заряда по полной цепи к величине этого заряда
Электродинамика – раздел физики, изучающий взаимодействие между электрически заряженными телами и частицами
Электроёмкость – отношение заряда одной из обкладок конденсатора к напряжению между его обкладками
Электролиз – процесс разложения электролита при пропускании электрического тока
Электролит – вещество, обладающее ионной проводимостью
Энергия – способность тела или системы тел совершить работу
Определения и формулы
Равномерное прямолинейное движение
Скоростью равномерного прямолинейного движения называют постоянную векторную величину, численно равную перемещению, которое совершает тело за единицу времени (t).
Проекция скорости на координатную ось
Проекция скорости (vx) на координатную ось равна изменению координаты (x-x0) в единицу времени (t).
Перемещение
Перемещение при равномерном прямолинейном движении равно произведению скорости на время (t) этого перемещения.
Проекция перемещения на координатную ось
Проекция перемещения (sx) при равномерном прямолинейном перемещении равна изменению координаты (x-x0).
Равноускоренное прямолинейное движение
Средняя скорость при неравномерном прямолинейном движении
Средняя скорость при неравномерном прямолинейном движении равна отношению перемещения на время (t), в течение которого оно совершено.
Ускорение тела при его равноускоренном движении — величина, равная отношению изменения скорости к промежутку времени (t), в течение которого это изменение произошло.
Перемещение (s) тела в любой момент времени (t) равноускоренного прямолинейного движения определяется начальной скоростью (v0) тела и его конечной скоростью (v=v0+a×t).
Координата (x) тела в любой момент времени (t) определяется начальной координатой (x0), начальной скоростью и ускорением (a).
Ускорение свободного падения
Ускорение свободного падения (g) одинаково для всех тел на данной широте Земного шара.
Равномерное движение по окружности
Угловая скорость (ω) тела при равномерном движении по окружности характеризует быстроту изменения угла поворота и:
Частота обращения (n) — число оборотов по окружности в единицу времени — величина, обратная периоду обращения (Т).
Период обращения (Т) — время совершения телом одного полного оборота.
Скорость тела при равномерном движении по окружности (v):
Динамика
Законы Ньютона
Первый закон Ньютона
Существуют такие системы отсчета, относительно которых тело сохраняет состояния покоя или равномерного прямолинейного движения, если на него не действуют другие тела или равнодействующая всех приложенных к телу сил равна нулю.
Второй закон Ньютона
Равнодействующая всех сил приложенных к телу, равна произведению массы (m) тела на его ускорение, сообщенное этими силами.
Третий закон Ньютона
Тела действуют друг на друга с силами и равными по модулю и противоположными по направлению.
СИ: Н
Силы в природе
Сила упругости (Fупр), возникающая при деформации тела, пропорциональна удлинению тела (x) и направлена противоположно направлению перемещения частиц тела при деформации.
Закон всемирного тяготения
Тела притягиваются друг к другу с силой (F), модуль которой пропорционален произведению их масс (m1 и m2) и обратно пропорционален квадрату расстояния между их центрами масс (R).
Гравитационная постоянная (G) численно равна силе притяжения двух точечных тел массой один килограмм каждое при расстоянии между ними один метр.
Сила тяжести (Fт) равна произведению массы тела (m) на ускорение свободного падения (g).
где G — гравитационная постоянная;
M — масса Земли;
R — радиус Земли.
Вес покоящихся и движущихся тел
1) в состоянии покоя или движущегося равномерно и прямолинейно: P = m*g
2) движущегося вверх с ускорением (а): P = m*(g-a)
3) движущегося вниз с ускорением (а): P = m*(g-a)
4) движущегося со скоростью (v) на выпуклой поверхности радиусом (R) в верхней точке:
5) движущегося со скоростью (v) на вогнутой поверхности радиусом (R) в нижней точке:
6) в невесомости: P = 0
Силы трения
Максимальная сила трения покоя (Fтр)max пропорциональна силе нормального давления (N) и зависит от характера взаимодействия соприкасающихся поверхностей тел, определяемого коэффициентом трения (μ)
Сила трения скольжения (Fтр) пропорциональна силе давления (N), коэффициенту трения (μ) и направлена противоположно направлению движения тела.
Коэффициент трения (μ) вычисляют как отношение модулей силы трения (Fтр) и силы давления (N).
Движение тела под действием силы трения
1) Путь (l), пройденный движущимся телом под действием силы трения до полной остановки (тормозной путь), прямо пропорционален квадрату начальной скорости (v0) и обратно пропорционален коэффициенту трения (μ):
, (g — ускорение свободного падения).
2) Время (t) движения тела под действием силы трения до момента полной остановки (время торможения) прямо пропорционально начальной скорости (v0) и обратно пропорционально коэффициенту трения (μ):
Движение тела под действием нескольких сил
Условие равновесия тела (как материальной точки)
Тело находится в равновесии (в покое или движется равномерно и прямолинейно), если сумма проекций всех сил, действующих на тело, на любую ось (ОХ, ОY, O, …) равна нулю.
Движение тела по наклонной плоскости
Ускорение тела, скользящего вниз по наклонной плоскости с углом наклона (α) и коэффициентом трения тела о плоскость (μ), не зависит от массы тела и равно:
, (g — ускорение свободного падения)
Движение связанных тел через неподвижный блок
Ускорение двух тел, массами m1 и m2, связанных нитью, перекинутой через неподвижный блок, равно:
, (g — ускорение свободного падения)
Законы сохранения в механике
Импульс тела — векторная величина, равная произведению массы (m) тела на его скорость.
Импульс силы равен изменению импульса тела.
Закон сохранения импульса
Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых движениях и взаимодействиях тел системы.
Механическая работа силы
Работа (А) постоянной силы равна произведению модулей векторов силы и перемещения на косинус угла между этими векторами.
Теорема о кинетической энергии
Работа (А) силы (или равнодействующей сил) равна изменению кинетической энергии (Ek1 и Ek2) движущегося тела.
где m — масса тела, v1, v2 — начальная и конечная скорости тела
Потенциальная энергия поднятого тела
Потенциальная энергия (ЕП) тела, поднятого на некоторую высоту (h) над нулевым уровнем, равна работе (А) силы тяжести (m×g) при падении тела с этой высоты до нулевого уровня.
Работа силы тяжести
Работа (А) силы тяжести (mg) не зависит от пути, пройденного телом, а определяется разностью высот (Δh=h2-h1) положения тела в конце и в начале пути и равна разности его потенциальных энергий (EП2 и EП1).
Потенциальная энергия деформированного тела
Потенциальная энергия (ЕП) деформированного тела (пружины) равна работе силы упругости при переходе тела (пружины) в состояние, в котором его деформация равна нулю.
где k — жесткость; х — деформация пружины.
Закон сохранения полной механической энергии
Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или силами упругости, остается неизменной при любых движениях тел системы.
Движение жидкостей и газов по трубам
Молекулярная физика
Связь массы, плотности и объёма:
m = pV
Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:
Определение концентрации задаётся следующей формулой:
Для средней квадратичной скорости молекул имеется две формулы:
Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:
Следствия из основного уравнения МКТ:
Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):
pV = vRT
Газовые законы.
Закон Бойля-Мариотта:
Если m = const и T = const, то: pV = const
Термодинамика
Количество теплоты (энергии) необходимое для нагревания некоторого тел а (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:
Фазовые превращения.
Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):
Работа идеального газа:
Изменение внутренней энергии рассчитывается по формуле:
Первый закон (первое начало) термодинамики (ЗСЭ):
КПД тепловой машины может быть рассчитан по формуле:
Где:
Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя,
Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику.
Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):
Относительная влажность воздуха может быть рассчитана по следующим формулам:
Потенциальная энергия поверхности жидкости площадью S:
Электростатика
Электрический заряд может быть найден по формуле:
Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):
Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:
Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:
Работа электрического поля в общем случае может быть вычислена также и по одной из формул:
В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:
Определение потенциала задаётся выражением:
Ёмкость плоского конденсатора:
Заряд конденсатора:
q = CU
Электрический ток
Закономерности последовательного соединения:
Закономерности параллельного соединения:
Работа электрического тока (закон Джоуля-Ленца ). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:
Мощность электрического тока:
Энергобаланс замкнутой цепи
Полезная мощность или мощность, выделяемая во внешней цепи:
Максимально возможная полезная мощность источника достигается, если R = r и равна:
КПД источника тока:
Магнетизм
ЭДС индукции рассчитывается по формуле:
ЭДС самоиндукции возникающая в катушке:
Энергия катушк и (вообще говоря, это энергия магнитного поля внутри катушки):
Колебания
Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω0:
Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:
Период колебаний математического маятника:
Период колебаний пружинного маятника:
Период гармонических колебани й в электрическом колебательном контуре определяется по формуле:
Волны
Длина волны может быть рассчитана по формуле:
Скорость электромагнитной волны (в т.ч. света) в некоторой среде:
Оптика
Оптическая длина пути определяется формулой:
Оптическая разность хода двух лучей:
Формула тонкой линзы:
Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета: