Что называется линейным углом двугранного угла
Двугранный угол
Вы будете перенаправлены на Автор24
Понятие двугранного угла
Для введения понятия двугранного угла, для начала вспомним одну из аксиом стереометрии.
На этой аксиоме основан принцип построение двугранного угла.
Фигура называется двугранным углом, если она состоит из прямой и двух полуплоскостей этой прямой, не принадлежащих одной плоскости.
Рисунок 2. Двугранный угол
Градусная мера двугранного угла
Очевидно, что каждый двугранный угол имеет бесконечное число линейных углов.
Все линейные углы одного двугранного угла равняются между собой.
Доказательство.
\[\angle AOB=\angle A_1
В силу произвольности выборов линейных углов. Все линейные углы одного двугранного угла равны между собой.
Теорема доказана.
Готовые работы на аналогичную тему
Градусной мерой двугранного угла называется градусная мера линейного угла двугранного угла.
Примеры задач
Доказательство.
Изобразим рисунок по условию задачи (рис. 5).
Для доказательства вспомним следующую теорему
Теорема 2: Прямая, проходящая через основание наклонной, перпендикулярно ей, перпендикулярна её проекции.
Решение.
Будем рассматривать рисунок 5.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 27 04 2021
Двугранный угол (ЕГЭ 2022)
Дай нам 10 минут ты разберешься в одной из самых важных тем стереометрии.
И получишь за неё баллы на ЕГЭ!
Двугранный угол — коротко о главном
Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.
Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.
Двугранный угол может быть и острым и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!
Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90<>^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90<>^\circ \).
Два способа найти угол между плоскостями:
Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.
Двугранный угол — определения
Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.
При этом прямая \( \displaystyle AB\) – это ребро двугранного угла, а полуплоскости \( \displaystyle \alpha \) и \( \displaystyle \beta \) – стороны или грани двугранного угла.
Двугранный угол получает обозначение по своему ребру: «двугранный угол \( \displaystyle AB\)».
С понятием двугранного угла тесно связано понятие угол между плоскостями.
Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.
Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:
Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!
Линейный угол двугранного угла
Как измерить двугранный угол?
Нужно поступить так: из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру.
В плоскости \( \displaystyle \alpha \) провели перпендикуляр \( \displaystyle MD\) к ребру \( \displaystyle AB\). Что получилось? Обычный, плоский угол \( \displaystyle \varphi \).
Вот этот угол и называется: линейный угол двугранного угла \( \displaystyle AB\).
Зачем этот линейный угол? Запомни, это очень ВАЖНО:
Двугранный угол измеряется величиной своего линейного угла.
То есть математически договорились, что если угол φ будет равен, к примеру \( \displaystyle 20<>^\circ \), то это будет автоматически означать, что угол \( \displaystyle AB\) равен \( \displaystyle 20<>^\circ \).
Вот и ключ к поиску величины двугранного угла и угла между плоскостями:
Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.
Ещё раз немного о названиях.
Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90<>^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90<>^\circ \).
Как найти угол между плоскостями?
Найти угол между плоскостями можно двумя способами: геометрическим и алгебраическим.
Геометрический способ
При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.
Алгебраический способ
Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.
\( \displaystyle \cos \gamma =\frac<<_<1>><_<2>>+<_<1>><_<2>>+< |
Подробнее про уравнение плоскости ты можешь прочитать в статье «Расстояние от точки до плоскости»!
Какой же способ лучше? Зависит от задачи.
А если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.
Но тогда нужно очень твёрдо знать формулы и не делать арифметических ошибок при многочисленных подсчётах – ведь придётся искать \( \displaystyle <_<1>>,<_<1>>,<
Давай разберём несложную задачу для примера. Мы применим оба метода к одной и той же задаче.
Решение геометрическим способом
В правильной треугольной пирамиде боковое ребро в три раза больше ребра основания. Найти двугранный угол при основании пирамиды.
Двугранный угол. Линейный угол двугранного угла
Двугранным углом называется фигура, образованная двумя полуплоскостями с общей прямой, которая их ограничивает.
Полуплоскости α и β — грани двугранного угла.
C — ребро двугранного угла (рис.33)
Линейным углом двугранного угланазывается угол между лучами, по которым плоскость, перпендикулярная ребру двугранного угла, пересекает его грани.
Плоскость линейного угла перпендикулярна каждой грани двугранного угла (рис.34)
Способы построения линейного угла:
На ребре выбирается точка, через нее в гранях проводятся лучи, перпендикулярные ребру. Угол, образованный этими лучами, и будет искомым линейным углом (рис.35)
∠AMB — линейный
Двугранные углы
Если из произвольной точки D ребра AB (черт. 28) проведём на каждой грани по перпендикуляру к ребру, то образованный ими угол CDE называется линейным углом двугранного угла.
Величина линейного угла не зависит от положения его вершины на ребре. Так, линейные углы CDE и C1D1E1 равны, потому что их стороны соответственно параллельны и одинаково направлены.
Плоскость линейного угла перпендикулярна к ребру, так как она содержит две прямые, перпендикулярные к нему. Поэтому для получения линейного угла достаточно грани данного двугранного угла пересечь плоскостью, перпендикулярной к ребру, и рассмотреть получившийся в этой плоскости угол.
Равенство и неравенство двугранных углов
Два двугранных угла считаются равными, если они при вложении могут совместиться; в противном случае тот из двугранных углов считается меньшим, который составит часть другого угла.
Подобно углам в планиметрии, двугранные углы могут быть смежные, вертикальные и пр.
Если два смежных двугранных угла равны между собой, то каждый из них называется прямым двугранным углом.
1) Равным двугранным углам соответствуют равные линейные углы.
2) Большему двугранному углу соответствует больший линейный угол.
Тогда если эти двугранные углы равны, то грань Q1 совпадёт с гранью Q; если же угол А1В1 меньше угла AB, то грань Q1 займёт некоторое положение внутри двугранного угла, например Q2.
Заметив это, возьмём на общем ребре какую-нибудь точку В и проведём через неё плоскость R, перпендикулярную к ребру. От пересечения этой плоскости с гранями двугранных углов получатся линейные углы. Ясно, что если двугранные углы совпадут, то у них окажется один и тот же линейный угол CBD; если же двугранные углы не совпадут, если, например, грань Q1 займёт положение Q2, то у большего двугранного угла окажется больший линейный угол (именно: ∠CBD > ∠C2BD).
1) Равным линейным углам соответствуют равные двугранные углы.
2) Большему линейному углу соответствует больший двугранный угол.
Эти теоремы легко доказываются от противного.
1) Прямому двугранному углу соответствует прямой линейный угол, и обратно.
Пусть (черт. 30) двугранный угол PABQ прямой. Это значит, что он равен смежному углу QABP1. Но в таком случае линейные углы CDE и CDE1 также равны; а так как они смежные, то каждый из них должен быть прямой. Обратно, если равны смежные линейные углы CDE и CDE1, то равны и смежные двугранные углы, т.е. каждый из ни должен быть прямой.
2) Bcе прямые двугранные углы равны, потому что у них равны линейные углы.
Подобным же образом легко доказать, что:
3) Вертикальные двугранные углы равны.
4) Двугранные углы с соответственно параллельными и одинаково (или противоположно) направленными гранями равны.
5) Если за единицу двугранных углов возьмём такой двугранный угол, который соответствует единице линейных углов, то можно сказать, чтo двугранный угол измеряется его линейным углом.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №11. Перпендикулярность плоскостей
Перечень вопросов, рассматриваемых в теме.
Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Перпендикуляры к ребру двугранного угла образуют линейный угол двугранного угла. Градусной мерой двугранного угла называется градусная мера его линейного угла.
Если угол между пересекающимися плоскостями равен 90 градусом, то плоскости перпендикулярны.
Признак перпендикулярности плоскостей: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Следствие из признака перпендикулярности плоскостей: Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
Прямоугольный параллелепипед – фигура, у которой все боковые ребра перпендикулярны основанию.
Атанасян Л.С., Бутузов В.Ф. Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.
Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения
Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. Прямая а, которая является общей границей полуплоскостей, называется ребром двугранного угла (рис. 1а и 1б).
Двугранный угол с ребром CD, на разных гранях которого отмечены точки A и B называют двугранным углом CABD.
Перпендикуляры к ребру AO и BO образуют линейный угол двугранного угла AOB (рис. 1в). Так как луч ОА перпендикулярен прямой CD и луч OB перпендикулярен прямой CD, то плоскость АОВ перпендикулярна к прямой CD. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Двугранный угол имеет бесконечное множество линейных углов
Градусной мерой двугранного угла называется градусная мера его линейного угла. Так же как и плоские углы, двугранные углы могут быть прямыми, острыми и тупыми.
Все линейные углы двугранного угла равны друг другу.
Рассмотрим два линейных угла АОВ и А1О1В1 (рис. 1г). Лучи ОА и О1А1, лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Точно так же сонаправлены лучи OB и O1B1. Поэтому углы АОВ и А1О1В1 равны как углы с сонаправленными сторонами.
Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.
Если один из этих двугранных углов равен фи, то другие три угла равны соответственно 180 градусов минус фи, фи и 180 градусов минус фи (рис. 2 а). В частности, если один из углов прямой, то и остальные три угла прямые. Если угол между пересекающимися плоскостями равен 90 градусом, будем называть такие плоскости перпендикулярными (рис. 2б).
Для доказательства теоремы рассмотрим плоскости альфа и бетта такие (рис. 3), что плоскость альфа проходит через прямую АВ, перпендикулярную к плоскости бетта и пересекающуюся с ней в точке А. Докажем, что плоскости альфа и бетта перпендикулярны. Плоскости альфа и бетта пересекаются по некоторой прямой АС. При этом прямая АВ перпендикулярна прямой АС, так как по условию прямая АВ перпендикулярна плоскости бетта, это означает, что прямая АВ перпендикулярна к любой прямой, лежащей в плоскости бетта.
Проведем в плоскости бетта прямую AD, перпендикулярную к прямой АС. Тогда угол BAD — линейный угол двугранного угла, образованного при пересечении плоскостей альфа и бетта. Но угол BAD равен 90 градусов так как прямая АВ перпендикулярна плоскости бетта. Следовательно, угол между плоскостями альфа и бетта равен 90 градусов. Что и требовалось доказать.
Из этой теоремы вытекает важное следствие:
Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
На рисунке 4 представлен прямоугольный параллелепипед. У этой фигуры все боковые ребра перпендикулярны основанию.
Его основаниями служат прямоугольники ABCD и A1B1C1D1, а боковые ребра АА1,BB1,CC1 и DD1 перпендикулярны к основаниям. Отсюда следует, что ребро АА1 перпендикулярно к ребру АВ, т. е. боковая грань АА1В1В является прямоугольником. То же самое можно сказать и об остальных боковых гранях.
Таким образом, прямоугольный параллелепипед обладает следующими свойствами:
1) В прямоугольном параллелепипеде все шесть граней — прямоугольники.
2) Все двугранные углы прямоугольного параллелепипеда — прямые.
3) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда называются длины трех ребер, имеющих общую вершину.
Докажем последнее свойство.
Так как ребро СС1 перпендикулярно к основанию ABCD, то угол АСС1, прямой. Из прямоугольного треугольника АСС1, по теореме Пифагора получаем
Следствием из этого свойства является то, что диагонали прямоугольного параллелепипеда равны.
Стоит отметить, что если у прямоугольного параллелепипеда все три измерения равны, то он называется, а все его грани являются равными друг другу квадратами.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. В прямоугольном параллелепипеде ABCDA1B1C1D1 (рис. 5) боковая грань DD1C1C – квадрат, DC равно 4 см, BD1 равно 6 см. Найдите BC и докажите, что плоскости BCD1 и DC1 B1 взаимно перпендикулярны.
Сначала найдем BC. Воспользуемся тем свойством прямоугольного параллелепипеда, что квадрат его диагонали равен сумме квадратов трех его измерений.
Тогда диагональ BD1 в квадрате равна AD в квадрате плюс DD1 в квадрате плюс DC в квадрате. BD1 – известно из условия, DD1 и DC – стороны квадрата и тоже известны из условия, тогда отсюда мы можем выразить ребро AD, которое ребру BC.Отсюда находим, что BC равно 2 сантиметрам.
Для доказательства перпендикулярности плоскостей BCD1 и DC1 B1 воспользуемся признаком перпендикулярности плоскостей. Этот признак звучит следующим образом: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Заметим, что плоскость BCD1 проходит через диагональ грани DD1 C1C – CD1. Эта диагональ перпендикулярна плоскости DC1 B1 в соответствии с признаком перпендикулярности прямой и плоскости, так как CD1 перпендикулярна второй диагонали квадрата – C1D и перпендикулярна ребру прямоугольного параллелепипеда C1 B1. Что и требовалось доказать.
Тестовый вопрос №2. В прямом двугранном угле дана точка A. Расстояния от точки A до граней угла: AA1=6 см и AB1=8 см. Определите расстояние от точки A до ребра двухгранного угла.
Отрезки AA1 и AB1 перпендикулярны граням двугранного угла, поэтому AA1BB1 – прямоугольник. Искомое расстояние – диагональ этого прямоугольника, которую найдем с помощью теоремы Пифагора: сантиметров.
Тестовый вопрос №10. В прямоугольном параллелепипеде ABCDA1B1C1D1 длины рёбер: AB = 2, BC=3, AA1 = 4. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C1.
Решение. Нарисуем рисунок.
В рассматриваемом прямоугольном параллелепипеде проведем отрезок BC1. Затем построим плоскость на прямых BC1 и AB. Так как плоскости прямоугольного параллелепипеда AA1D1D и BB1C1C параллельны, поэтому искомым сечением является прямоугольник ABC1D1.