Истинное значение и действительное значение величины
В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины.
Квалиметрия. Качество. Показатели качества. Методы определения качества.
Квалиметрия(от лат. qualis – какой по качеству и греч. метрео – мерить, измерять) – науч. дисциплина, в рамках к-рой изучаются методология и проблематика комплексной, количественной оценки качества объектов любой природы: одушевленных или неодушевленных, предметов или процессов, продуктов труда или продуктов природы, имеющих материальный или духовный характер (естественно, что объектом приложения методов квалиметрии может быть и любое конструктивное и технологическое решение, если его качество требуется подвергнуть квалиметрическпму анализу).
Квалиметрию обычно подразделяется на теоретическую квалиметрию, изучающую проблемы оценки качества в общем плане, и прикладную квалиметрию, рассматривающую вопросы измерения качества применительно к конкретным объектам.
Квалиметрия как наука переживает период становления, чем объясняется отсутствие единого мнения по ряду вопросов. Являясь в значительной степени науч. дисциплиной межотраслевого характера, квалиметрия по многим вопросам смыкается с конкретными инж. дисциплинами: стандартизацией, метрологией, экономикой, организацией производства, правом, психологией и др., а в ее аппарат включается целая группа мат. теорий.
Конечной целью квалиметрии являются разработка и совершенствование методик, с помощью к-рых качество конкретного оцениваемого объекта может быть выражено одним числом, характеризующим степень удовлетворения данным объектом общественной или личной потребности. Кроме того, подобные методики позволяют решить и др. задачи квалиметрического анализа.
Показатель качества (продукции)— это количественная характеристика одного или нескольких свойств продукции, входящих в её качество, рассматриваемая применительно к определённым условиям её создания и эксплуатации или потребления.Каждая продукция и каждая услуга обладают свойственным им перечнем показателей качества, который зависит от назначения продукции, условий её производства и эксплуатации и многих других факторов. Показатель качества может выражаться в различных физических единицах измерения (например, секунда, метр, кв.метр, куб.метр, км/ч, грамм, вольт, ватт, и др.), условных единицах измерения (балл, рубль, FLOPS, процент избирателей и др.), а также быть безразмерным (вероятность наступления ожидаемого события, и др.). В виде технических требований показатели входят в состав технического задания на разрабатываемую продукцию и технических условий.
Общая характеристика показателей качества
Номенклатура показателей окончательно формируется на этапе проектирования продукции, так как здесь они закладываются в конструкцию. Далее, на этапе производства эти показатели находят своё воплощение. А на этапе эксплуатации (потребления) показатели становятся индивидуальной характеристикой продукции, выделяют её из других видов продукции (товара), составляют её потребительские свойства и, следовательно, делают привлекательной и конкурентоспособной.
Стремление учесть, как можно больше показателей в желании максимально полно охарактеризовать продукцию делает задачу проектирования практически нерешаемой. Важно выделять главные показатели, отражающие наиболее существенные потребительские свойства объекта. Также следует иметь в виду, что для определённых условий производства и эксплуатации существуют обязательные к учёту показатели. В основном это касается безопасности, когда минимально приемлемый уровень требований устанавливают нормативные документы федеральных органов исполнительной власти, осуществляющих контроль за качеством и безопасностью товаров, такие как Госгортехнадзор, Роспотребнадзор и другие. Также, если продукция предназначается для реализации отдельным гражданам или каким-то образом может быть им продана, то она должна удовлетворять дополнительным требованиям, устанавливаемыми Законом Российской Федерации «О защите прав потребителей».
Всероссийский научно-исследовательский институт оптико-физических измерений
ПОИСК И НАВИГАЦИЯ
МЫ НА YOUTUBE
Физические величины
Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)
Физическая величина (англ. physical quantity) – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.
Измеряемая физическая величина (англ. measurand) – физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи.
Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу.
Значение физической величины (англ. value (of a quantity)) – выражение размера физической величины в виде некоторого числа принятых для нее единиц.
Числовое значение физической величины (англ. numerical value (of a quantity)) – отвлеченное число, входящее в значение величины.
Истинное значение физической величины (англ. true value (of a quantity)) – значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Истинное значение физической величины может быть соотнесено с понятием абсолютной истины. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.
Действительное значение физической величины (англ. conventional true value (of a quantity)) – значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.
Влияющая физическая величина (англ. influence quantity) – физическая величина, оказывающая влияние на размер измеряемой величины и (или) результат измерений.
Основная физическая величина (англ. base quantity) – физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.
Производная физическая величина (англ. derived quantity) – физическая величина, входящая в систему величин и определяемая через основные величины этой системы.
Размерность физической величины (англ. dimension of a quantity) – выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные с коэффициентом пропорциональности, равным 1.
Показатель размерности физической величины – показатель степени, в которую возведена размерность основной физической величины, входящая в размерность производной физической величины.
Размерная физическая величина – физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю.
Шкала физической величины – упорядоченная совокупность значений физической величины, служащая исходной основой для измерений данной величины.
Род физической величины – качественная определенность физической величины.
Неаддитивная физическая величина – физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга ее значений не имеет физического смысла.
Физи́ческая величина́ — физическое свойство материального объекта, физического явления, процесса, которое может быть охарактеризовано количественно.
Значение физической величины — одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения, на основе которой они были получены.
Размер физической величины — значения чисел, фигурирующих в значении физической величины.
Например, автомобиль может быть охарактеризован с помощью такой физической величины, как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером — число 1, или же значением будет 1000 килограмм, а размером — число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины — скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером — число 100.
Размерность физической величины — единица измерения, фигурирующая в значении физической величины. Как правило, у физической величины много различных размерностей: например, у длины — нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц — СИ, СГС и др.
Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.
Пример. Если физическая величина мощность записывается как
P = 42,3 × 10³ Вт = 42,3 кВт,
Р — это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт — значение этой физической величины, 42,3 × 10³ — размер этой физической величины.
Вт — это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило» Международной системы единиц (СИ).
Содержание
Размерные и безразмерные физические величины
Аддитивные и неаддитивные физические величины
Экстенсивные и интенсивные физические величины
Некоторые физические величины, такие как момент импульса, площадь, сила, длина, время, не относятся ни к экстенсивным, ни к интенсивным.
От некоторых экстенсивных величин образуются производные величины:
Скалярные, векторные, тензорные величины
Система единиц физических величин
Система единиц физических величин — совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц — Международная система единиц (СИ), СГС.
Символы физических величин
В качестве символов физических величин обычно выступают отдельные прописные и строчные литеры латинского или греческого алфавита. Часто к обозначениям добавляют верхние или нижние индексы, обозначающие, к чему относится величина, например Eп часто обозначает потенциальную энергию, а cp — теплоёмкость при постоянном давлении.
Как уже говорилось, предметом метрологииявляется извлечение количественной информации о свойствах объектов и процессов, т.е. измерение количественных свойств объектов и процессов с заданной точностью и достоверностью.
Свойство– философская категория, выражающая такую сторону объекта (явления, процесса, продукции), которая обуславливает его различие или общность с другими объектами (явлениями, процессами, продукцией) и обнаруживается в его отношениях к ним.
Анализ величин позволяет разделить их на два вида:
— величины материального вида (реальные);
— величины идеальных моделей реальности, которые относятся главным образом к математике и являются обобщением (моделью) конкретных реальных понятий.
Реальные величины, в свою очередь, делятся на:
— физические, в самом общем случае могут быть определены как свойственные материальным объектам (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках;
Размер является объективной количественной характеристикой материального объекта, не зависящей от выбора единиц измерений.
Значение физической величины — это выражение размера физической величины в виде некоторого числа принятых для нее единиц.
Из приведённых примеров видно, что значение, как и размер, от выбора единиц не зависят, в отличие от числового значения. Для одного и того же размера числовое значение тем меньше, чем больше единица измерения (и наоборот).
Из-за зависимости числовых значений от размеров единиц физической величины, роль последних очень велика. Если допустить произвол в выборе единиц, то результаты измерений будут несопоставимы между собой, т.е. нарушится единство измерений.Чтобы этого не произошло, единицы измерений устанавливаются по определённым правилам и закрепляются законодательным путём.
Истинное значение физической величины может быть соотнесено с понятием абсолютной истины. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.
Физический параметр (параметр) — физическая величина, рассматриваемая при измерении данной физической величины как вспомогательная.
Пример— При измерении электрического напряжения переменного тока частоту тока рассматривают как параметр напряжения. При измерении мощности поглощенной дозы рентгеновского излучения в некоторой точке поля этого излучения напряжение генерирования излучения часто рассматривают как один из параметров этого поля.
Измеряемый параметр-. физическая величина, обычно наилучшим образом отражающая качество изделий или процессов, термин применяется, как правило, при оценивании качества продукции.
Все объекты материального мира обладают рядом свойств, позволяющих отличать один объект от другого.
Свойство объекта – это объективная особенность, проявляющаяся при его создании, эксплуатации и потреблении.
Метрологическая наука занимается измерением количественных характеристик материальных объектов – физических величин.
Физическая величина – это свойство, в качественном отношении присущее многим объектам, а в количественном отношении индивидуально для каждого из них.
Например, массу имеют все материальные объекты, но у каждого из них величина массы индивидуальна.
Физические величины делятся на измеряемые и оцениваемые.
Измеряемые физические величины могут быть выражены количественно в виде определенного числа установленных единиц измерения.
Например, значение напряжения в сети составляет 220В.
Физические величины, которые не имеют единицы измерения, могут быть только оценены. Например, запах, вкус. Их оценка осуществляется дегустированием.
Физические величины можно квалифицировать по метрологическим признакам.
По видам явлений они делятся на
а) вещественные, описывающие физические и физико-химические свойства веществ, материалов и изделий из них.
Например, масса, плотность, электрическое сопротивление (для измерение сопротивления проводника по нему должен проходить ток, такое измерение называют пассивным).
б) энергетические, описывающие характеристики процессов преобразования, передачи и использования энергии.
К ним относятся: ток, напряжение, мощность, энергия. Эти физические величины называют активными. Они не требуют вспомогательного источника энергии.
Есть группа физических величин, которые характеризуют протекание процессов во времени, например, спектральные характеристики, корреляционные функции.
По принадлежности к различным группам физических процессов, величины могут быть
· ионизирующих излучений, атомной и ядерной физики.
По степени условной независимости физические величины делят на
По наличию размерности физические величины делят на размерные и безразмерные.
Примером размерной величины является сила, безразмерной – уровень звуковой мощности.
Чтобы оценить количественно физическую величину вводится понятие размерфизической величины.
Например, каждое тело обладает определенной массой, следовательно, их можно различать по массе, т.е. по размеру физической величины.
Выражение размера физической величины в виде некоторого числа принятых для нее единиц определено как значение физической величины.
Процесс измерения – это процедура сравнения неизвестной величины с известной физической величиной (сравниваемой) и в этой связи вводится понятие истинное значение физической величины.
Истинное значение физической величины – это значение физической величины, которое идеальным образом характеризует в качественном и количественном соотношении соответствующую физическую величину.
Истинное значение независимых физических величин воспроизведено в их эталонах.
Истинное значение применяют редко, больше пользуются действительным значением физической величины.
Действительное значение физической величины – это значение, полученное экспериментальным путем и несколько близкое к истинному значению.
Раньше было понятие «измеряемые параметры», сейчас по нормативному документу РМГ 29-99 рекомендуется понятие «измеряемые величины».
В названии системы физических величин применяют символы величин, принятые как основные.
Основные физические величины не зависят от значений других величин этой системы.
Производная физическая величина – это физическая величина, входящая в систему величин и определяемая через основные величины этой системы. Например, сила определяется как масса на ускорение.
3. Единицы измерения физических величин.
Единицей измерений физической величины называется величина, которой по определению присвоено численное значение равное 1 и которая применяется для количественного выражения однородных с ней физических величин.
Единицы физических величин объединяют в систему. Первая система была предложена Гауссом К (миллиметр, миллиграмм, секунда). Сейчас действует система СИ, ранее был стандарт стран СЭВ.
Единицы измерений делятся на основные, дополнительные, производные и внесистемные.
В системе СИ семь основных единиц:
· длина (метр),
· масса (килограмм),
· время (секунда),
· термодинамическая температура (кельвин),
· количество вещества (моль),
· сила электрического тока (ампер),
· сила света (кандела).
Обозначение основных единиц системы СИ
Физическая величина
Единица измерений
Наименование
Обозна-чение
Наименование
Обозначение
русское
международное
основные
Длина
L
метр
м
m
Масса
m
килограмм
кг
kg
Время
t
секунда
с
s
Сила электрического тока
I
ампер
А
А
Термодинамическая температура
Т
кельвин
К
К
Количество вещества
n, v
моль
моль
mol
Cила света
J
кандела
кд
сd
дополнительные
Плоский угол
—
радиан
рад
rad
Телесный угол
—
стерадиан
ср
sr
Стерадиан – это телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной по длине равной радиусу сферы. Измеряют телесный угол путем определения плоских углов и проведения дополнительных расчетов по формуле:
Дополнительные единицы СИ использованы для образования единиц угловой скорости, углового ускорения и некоторых других величин.
Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, т.к. большинство важных для практики значений углов (полный угол, прямой угол и т.д.) в радианах выражаются трансцендентными числами (2p, p/2).
Производными называют единицы измерения, получаемые с помощью уравнений связи между физическими величинами. Например, единица сила в СИ – ньютон (Н):
Н = кг∙м/с 2.
Несмотря на то, что система СИ универсальна, она разрешает применять некоторые внесистемные единицы, которые нашли широкое практическое применение (например, гектар).
Внесистемными называют единицы, не вошедшие ни в одну из общепринятых систем единиц физических величин.
Кратной называется единица в целое число раз больше системной или внесистемной единицы. Например, кратная единица 1км = 1000 м.
Дольной называется единица, в целое число раз меньше системной или внесистемной единицы. Например, дольная единица 1 см = 0,01 м.