Что называется электрическим током в беспримесных полупроводниках
Как сказал.
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Я учу детей тому, как надо учиться
Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.
Урок 32. Лекция 32-1. Электрический ток в полупроводниках.
По значению удельного электрического сопротивления полупроводники занимают промежуточное место между проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений.
Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.
Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T.
Полупроводниками называются вещества, удельное сопротивление которых убывает с повышением температуры.
Такой ход зависимости ρ( T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Объяснение явлений, наблюдаемых в проводниках, возможно на основе законов квантовой механики. Рассмотрим качественно механизм электрического тока в полупроводниках на примере германия (Ge).
Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, то есть осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.
Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит. При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами.
Вакансии, которые не заняты электронами получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар.
В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией.
Рекомбинация – восстановление электронной связи между атомами.
Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.
Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов: I = In + Ip
Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.
При наличии примесей электропроводимость полупроводников сильно изменяется.
Примесной проводимостью называется проводимость полупроводников при наличии примесей.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
Различают два типа примесной проводимости – электронную и дырочную проводимости.
Например, вкристалл германия с четырехвалентными атомами введены пятивалентные атомы мышьяка, As.
На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался лишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.
Донорской примесью – называется примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла.
В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.
В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле nn >> np.
Проводимость, при которой основными носителями свободного заряда являются электроны называется электронной.
Полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.
Например, в кристалл германия введены трехвалентные атомы In.
На рисунке показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.
В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.
Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np >> nn.
Проводимость, при которой основными носителями свободного заряда являются дырки, называется дырочной проводимостью.
Полупроводник с дырочной проводимостью называется полупроводником p-типа.
Следует подчеркнуть, что дырочная проводимость в действительности обусловлена перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.
Зависимость электропроводимости полупроводников от температуры и освещенности
О том, какие процессы происходят при соприкосновении полупроводников p- n-типов и где используются полупроводники читайте в продолжении лекции 32 » Полупроводниковый диод. Полупроводниковые приборы»
Электропроводность полупроводников. Беспримесные и примесные полупроводники
КЛАССИФИКАЦИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ
ГЛАВА 1. ФИЗИЧЕСКИЕ ОСНОВЫ ПРОВОДИМОСТИ ПОЛУПРОВОДНИКОВ
Электропроводность полупроводников. Беспримесные и примесные полупроводники
Особенности электропроводности полупроводников обусловлены спецификой распределения по энергиям электронов атомов. Уровни энергий характеризуются энергетической диаграммой полупроводников.
Свободный электрон может появиться только при сообщении ему достаточной энергии, которая позволит разорвать имеющиеся связи. При этом полная энергия свободных электронов будет выше, чем у связанных, на величину, необходимую для разрыва связи. Отсюда появляются зона проводимости и зона валентная.В идеальных кристаллах электрон не может обладать промежуточной энергией. По этой причине в середине образуется запрещенная зона. Для германия ширина запрещенной зоны 0,72 эВ, для кремния – 1,12 эВ.
У металлов энергетическая диаграмма представляет собой непрерывный спектр разрешенных значений энергии, а у полупроводников и диэлектриков – прерывистый (рис.1).
Рис.1. Энергетические диаграммы: а – металла; б – полупроводника; в – диэлектрика.
У полупроводников и диэлектриков зоны разрешенных значений энергии отделены запрещенной зоной DWз. Две разрешенных зоны – нижняя, заполненная, валентная, верхняя, свободная, или зона проводимости. Величина DWз определяет энергию, которую нужно сообщить электрону, расположенному в верхнем энергетическом уровне валентной зоны, чтобы перевести его на нижний уровень зоны проводимости. Из-за этого число свободных электронов в полупроводнике меньше, чем в металле, а значит меньше и его проводимость.
На рис. 2 показана структура кристалла германия. (Германий и кремний, материалы IV группы, наиболее часто используются для изготовления полупроводников). В кристаллической решетке атомы сближены, орбиты валентных электронов обобществлены. Каждый атом связан ковалентными связями с соседними 4-мя атомами, что занимает все 4 валентных электрона внешней оболочки атома.
При температуре 0 о К все электроны связаны, тока нет. При воздействии внешних факторов (повышение температуры, освещение) кристаллу сообщается достаточное количество энергии, в результате чего электрон освобождается от связи с атомом и становится свободным. Это соответствует переходу на энергетической диаграмме из валентной зоны в зону проводимости. Полная энергия свободного электрона больше, чем связанного. В идеальных кристаллах электроны не могут обладать энергией между Wс и Wv.
Рис. 2. Кристаллическая решетка кристалла германия: а – образование свободного электрона; б – энергетическая диаграмма; в – схема образования и перемещения дырки
Под воздействием электрического поля свободный электрон способен перемещаться и участвовать в создании электрического тока. Выход электрона из ковалентной связи приводит к появлению в ней разрыва – дырки, которой присваивается положительный заряд. В валентной зоне ей соответствует наличие вакантного уровня энергии. В итоге электроны валентной зоны приобретают возможность перемещаться в кристалле и участвовать в создании электрического тока.
, (1.1)
где А – коэффициент, определяемый материалом;
Т – абсолютная температура.
Одновременно с термогенерацией происходит рекомбинация носителей, поэтому имеет место динамическое равновесие концентраций.
Для получения полупроводника с n-проводимостью в германий или кремний ( IV группа системы элементов) вводят элемент V группы (сурьма, фосфор, мышьяк), атомы которых имеют 5 валентных электронов (донор) (рис.3). Четыре электрона участвуют в ковалентных связях, а 5-й в связях не участвует и имеет более слабую связь с атомом. На энергетической диаграмме они находятся ближе к свободной зоне и поэтому все участвуют в создании тока. Концентрация носителей определяется концентрацией свободных электронов примеси. Она выше концентрации дырок, поскольку дырки быстро рекомбинируют, поэтому
При этом дырки будут основными, а электроны – неосновными носителями заряда (рис. 4).
Значительную роль в поведении полупроводников играет процесс рекомбинации. После окончания воздействия внешнего фактора, который вызвал относительное увеличение концентрации неосновных носителей, будет происходить рекомбинация дырок с электронами.
Спад концентрации дырок происходит по закону
, (1.2)
Рис. 5. Изменение проводимости полупроводника при изменении температуры.
где n, p – концентрация носителей;
q – заряд электрона;
При наличии неравномерного распределения носителей зарядов возникает диффузионный ток
Электрический ток в полупроводниках
По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.
Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает (рис 1.12.4). У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 1.13.1).
Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T
Такой ход зависимости ρ (T) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.
Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.
Парно-электронные связи в кристалле германия и образование электронно-дырочной пары
При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.
Если полупроводник поместить в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов:
Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.
Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).
Атом мышьяка в решетке германия. Полупроводник n-типа
На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.
В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле nn >> np. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.
Атом индия в решетке германия. Полупроводник p-типа
Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.
Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np >> nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.
Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.
Для полупроводников n— и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.
Электрический ток в полупроводниках. Собственная и примесная проводимости
Урок 58. Физика 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Электрический ток в полупроводниках. Собственная и примесная проводимости»
Существует широкий класс веществ, по удельной проводимости занимающие промежуточное место между проводниками и диэлектриками. Эти вещества принято называть полупроводниками.
К полупроводникам относят двенадцать химических элементов в средней части таблицы Менделеева, множество оксидов и сульфидов металлов, а также других химических соединений.
Давайте изучим основные свойства проводников с помощью двух простых опытов. Для этого соберём электрическую цепь, состоящую из источника тока, ключа, чистого полупроводника и миллиамперметра. Замкнём цепь. Амперметр нам показывает, что по цепи идёт достаточно слабый ток. А теперь нагреем исследуемый полупроводник.
Нетрудно заметить, как по мере роста его температуры сила тока в цепи возрастает. Это свидетельствует о том, что удельное сопротивление полупроводников с увеличением температуры не растёт как у металлов, а, наоборот, достаточно резко уменьшается. При этом зависимость сопротивления полупроводников от температуры является нелинейной. С понижением же температуры сопротивление полупроводников возрастает и вблизи абсолютного нуля становится таким же большим, как и у диэлектриков.
Давайте вернём наш полупроводник в исходное состояние, но теперь будем не нагревать его, а освещать при помощи обычного фонарика. Изменяя освещённость поверхности полупроводника, мы наблюдаем изменение показаний миллиамперметра. Результаты наших наблюдений означают, что при освещении поверхности полупроводника его сопротивление уменьшается.
Экспериментально установлено, что при прохождении электрического тока в чистых полупроводниках, как и в металлах, никаких химических изменений не происходит, то есть перенос заряда при прохождении тока не сопровождается переносом вещества.
Давайте рассмотрим механизм проводимости чистых полупроводников на примере кристалла германия, валентность атомов которого равна четырём. Такая валентность говорит нам о том, что атомы германия на внешней оболочке имеют четыре сравнительно слабо связанных с ядром валентных электрона. При этом каждый атом кристалла связан с четырьмя соседними атомами посредством парноэлектронной — ковалентной связи. То есть два соседних атома объединяют два своих валентных электрона (по одному от каждого атома), которые образуют электронную пару. Поэтому все валентные электроны атома германия участвуют в образовании ковалентных связей.
При температурах, близких к абсолютному нулю, ковалентные связи германия достаточно прочны, поэтому свободные электроны отсутствуют, и германий является диэлектриком.
Для того чтобы разорвать ковалентную связь и сделать электрон свободным, кристаллу германия необходимо сообщить некоторую энергию, например, нагревая кристалл. При этом часть электронов получает энергию, достаточную для того, чтобы покинуть атомы и стать свободными, подобно электронам в металлах. В электрическом поле они перемещаются между узлами решётки, создавая электрический ток.
Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью.
Нейтральный атом, которому принадлежал освободившийся электрон, становится положительно заряженным ионом, а в ковалентных связях образуется вакантное место с недостающим электроном. Его называют дыркой.
Одновременно с процессом возникновения свободных электронов и дырок происходит процесс, при котором один из электронов (не свободный, а обеспечивающий ковалентную связь) перескакивает на место образовавшейся дырки и восстанавливает ковалентную связь. При этом положение дырки меняется, что можно моделировать как её перемещение. Таким образом, при отсутствии внешнего электрического поля в кристалле полупроводника наблюдается беспорядочное перемещение свободных электронов и дырок, концентрации которых в чистом полупроводнике одинаковые.
Дырки считают подвижными носителями положительного заряда, который равен модулю заряда электрона. Проводимость, обусловленная движением дырок, называется дырочной проводимостью полупроводников.
Конечно же дырок как положительных зарядов, существующих реально, в действительности нет. Тем не менее представление о них является хорошей физической моделью, которая даёт возможность рассматривать электрический ток в полупроводниках на основе законов физики.
При наличии внешнего электрического поля на хаотическое движение свободных электронов и дырок накладывается их упорядоченное движение, то есть возникает электрический ток. Причём движение свободных электронов происходит в направлении, противоположном направлению напряжённости внешнего электрического поля, а движение дырок совпадает с направлением напряжённости поля
Проводимость, обусловленная движением свободных электронов и дырок в чистом полупроводнике, называют собственной проводимостью полупроводника.
Но изменить свойства полупроводников можно не только нагреванием или воздействием электромагнитного излучения, но и добавлением в чистый полупроводник примесей.
Проводимость, обусловленную наличием примесей в полупроводнике, называют примесной проводимостью полупроводника.
Рассмотрим механизм этой проводимости на примере кристалла германия, содержащего примесь атомов мышьяка, валентность которых равна пяти.
Итак, четыре валентных электрона атома мышьяка образуют ковалентные связи с соседними атомами германия. Пятые электроны атомов мышьяка не задействованы в образовании ковалентных связей и могут свободно перемещаться, почти как электроны в металлическом проводнике. Проводимость такого кристалла будет преимущественно электронной. Такие полупроводники называют электронными полупроводниками или полупроводниками n-типа (от латинского отрицательный).
Примеси, поставляющие в полупроводники свободные электроны без возникновения равного им количества дырок, называют донорными (то есть, отдающими). Удельное сопротивление полупроводника с содержанием таких примесей резко уменьшается и может приближаться к удельному сопротивлению металлического проводника.
А теперь давайте заменим атомы мышьяка, на атомы трёхвалентного индия. Очевидно, что валентные электроны атома индия образуют ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвёртым атомом германия у атома индия электрона нет. Поэтому возле каждого атома индия одна из ковалентных связей будет незаполненной, то есть возникает дырка. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. Но при этом дырка образуется на том месте, где до этого находился электрон.
В результате введения такой примеси в кристалле разрывается множество ковалентных связей и образуются дырки. Проводимость такого кристалла будет преимущественно дырочной.
Такие полупроводники называют дырочными полупроводниками или полупроводниками p-типа (от латинского положительный).
Примеси, наличие которых в полупроводнике приводит к образованию дырок, не увеличивая при этом числа свободных электронов, называют акце́пторными (то есть принимающими). Удельное сопротивление полупроводников, содержащих акцепторные примеси, также резко уменьшается.
Наиболее интересные явления происходят при контакте полупроводников п— и р-типов. Эти явления используются в большинстве полупроводниковых приборов.
Контакт двух проводников с разным типом проводимости называется электронно-дырочным переходом или, сокращённо, п—р-переходом.
Концентрация свободных электронов в n-области значительно выше, чем в p-области, соответственно концентрация дырок, то есть вакантных мест в p-области значительно больше их концентрации в n-области.
Как только полупроводники приводят в контакт, начинается диффузия электронов из области с проводимостью n-типа в область с проводимостью p-типа и соответственно переход дырок в обратном направлении. Перешедшие в полупроводник p-типа электроны занимают свободные места, происходит процесс рекомбинации электронов и дырок, а попавшие в полупроводник n-типа дырки также исчезают благодаря электронам, занимающим вакантное место.
В результате диффузии на границе между этими областями образуется двойной электрический слой разноимённо заряженных ионов, толщина которого не превышает долей микрометра. Между слоями ионов возникает электрическое поле, которое препятствует дальнейшему переходу основных носителей заряда через границу раздела. Иными словами, в зоне перехода между полупроводниками разных типов образуется так называемый запирающий слой.
Соберём электрическую цепь, состоящую из источника тока, лампочки и полупроводника с n—p-переходом. При этом положительный полюс источника тока подключим к p-области, а отрицательный — к n-области. При замыкании цепи лампочка будет светиться. Вывод очевиден: в цепи проходит электрический ток.
Объяснить это явление можно так. Под действием электрического поля, созданного источником тока, запирающий слой начинает исчезать, так как напряжённость внешнего электрического поля источника противоположна по направлению напряжённости поля запирающего слоя и практически полностью компенсирует её. Это приводит к возобновлению диффузии основных носителей заряда через n—p-переход. В этом случае n—p-переход включён в прямом или, говорят, в пропускном направлении.
А теперь поменяем подключение полупроводника к источнику тока.
При замыкании цепи лампочка не светится, то есть ток в цепи отсутствует. Причина в том, что толщина запирающего слоя и, следовательно, его сопротивление увеличиваются, так как направление напряжённости электрического поля, созданного источником, совпадает с направлением напряжённости поля запирающего слоя.
В этом случае n—p-переход включён в обратном (запирающем) направлении и ток через переход практически отсутствует (если не учитывать ток, созданный неосновными носителями, концентрация которых мала по сравнению с концентрацией основных носителей тока).
Таким образом, n—p-переход в полупроводнике обладает односторонней проводимостью.
Это свойство полупроводников широко используется в приборах, называемых полупроводниковыми диодами. Они являются основными элементами выпрямителей переменного тока и детекторов электромагнитных сигналов.