Что называется диагональю многоугольника

Диагональ

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Диагональ (греч. διαγώνιος от δια- «через» и γώνια «угол») в математике имеет геометрический смысл, а также используется при описании квадратных матриц.

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Содержание

Многоугольники и многогранники

Для многоугольников, диагональ это отрезок, соединяющий две вершины, не лежащие на одной стороне. Так, четырёхугольник имеет две диагонали, соединяющие противолежащие вершины. У выпуклого многоугольника диагонали проходят внутри него. Многоугольник выпуклый тогда и только тогда, когда его диагонали лежат внутри.

Пусть Что называется диагональю многоугольника— число вершин многоугольника, вычислим Что называется диагональю многоугольника— число возможных разных диагоналей. Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Таким образом, из одной вершины можно провести Что называется диагональю многоугольникадиагонали; перемножим это на число вершин

Что называется диагональю многоугольника,

однако, мы посчитали каждую диагональ дважды (по разу для каждого конца) — отсюда,

Что называется диагональю многоугольника

Диагональю многогранника называется отрезок, соединяющий две его вершины, не принадлежащие одной грани. Так, на изображении куба отмечена диагональ Что называется диагональю многоугольника. Отрезок же Что называется диагональю многоугольникадиагональю куба не является (но является диагональю одной из его граней).

Аналогично можно определить диагональ и для многогранников в пространствах бо́льших размерностей.

Матрицы

В случае с квадратными матрицами, главная диагональ является диагональной линией элементов, которая проходит с северо-запада на юго-восток. Например, единичная матрица может быть описана, как матрица, имеющая единицы на главной диагонали и нули вне её. Диагональ с юго-запада на северо-восток часто называется побочной диагональю. Наддиагональными элементами называются такие, что лежат выше и правее главной диагонали. Поддиагональными — те, что ниже и левее. Диагональная матрица — такая матрица, у которой все элементы вне главной диагонали равны нулю.

Теория множеств

По аналогии, подмножество декартового произведения X×X произвольного множества X на само себя, состоящее из пар элементов (x, x), называется диагональю множества. Это — единичное отношение, оно играет важную роль в геометрии: например, константные элементы отображения F с X в X могут быть получены сечением F с диагональю множества X.

Внешние ссылки

Что называется диагональю многоугольника

Полезное

Смотреть что такое «Диагональ» в других словарях:

ДИАГОНАЛЬ — (греч., от dia чрез, и gonia угол). 1) прямая линия, соединяющая в прямолинейной фигуре вершины двух углов, не лежащие на одной прямой. 2) шерстяная материя, тканая волосками в косом направлении очень эластичная. Словарь иностранных слов,… … Словарь иностранных слов русского языка

ДИАГОНАЛЬ — плотная ткань с рельефными рубчиками на лицевой стороне. Выпускается чистошерстяная, полушерстяная и хлопчатобумажная. Чистошерстяная диагональ вырабатывается из тонкой кручёной пряжи. Полушерстяная вырабатывается или из полушерстяной кручёной… … Краткая энциклопедия домашнего хозяйства

диагональ — 1. ДИАГОНАЛЬ, и; ж. [лат. diagonalis] 1. Матем. Отрезок прямой, соединяющий две несмежные вершины многоугольника или две вершины многогранника, не принадлежащие одной грани. Д. квадрата. Д. октаэдра. Разделить квадрат диагональю. Провести д. 2.… … Энциклопедический словарь

ДИАГОНАЛЬ — (от греч. diagonios идущий от угла к углу) отрезок прямой, соединяющий две несмежные вершины многоугольника или две вершины многогранника, не принадлежащие одной грани … Большой Энциклопедический словарь

ДИАГОНАЛЬ — плотная хлопчатобумажная или шерстяная ткань с отчетливо выраженными наклонными рубчиками. Из диагонали шьют воинское обмундирование, куртки и т. д … Большой Энциклопедический словарь

ДИАГОНАЛЬ — ДИАГОНАЛЬ, диагонали, жен. (лат. diagonalis). 1. Прямая линия, соединяющая несмежные вершины многоугольника или многогранника (мат.). || То же спец. о прямой линии, соединяющей противоположные углы прямоугольника и расположенной под острым углом… … Толковый словарь Ушакова

ДИАГОНАЛЬ — ДИАГОНАЛЬ, и, жен. 1. В математике: отрезок прямой линии, соединяющий две вершины многоугольника, не лежащие на одной стороне, или две вершины многогранника, не лежащие на одной грани. 2. Ткань с косыми рубчиками. • По диагонали наискось, не под… … Толковый словарь Ожегова

ДИАГОНАЛЬ — жен. черта, соединяющая два угла, проведенная с угла на угол, в плоском угольнике или в теле; искосина, долонь. Долонь прямоуголыника делит его пополам, на два равные треугольника. | Род французского сукна, с косою низкою. Диагональный искосный,… … Толковый словарь Даля

диагональ — сущ., кол во синонимов: 6 • долонь (6) • искосина (4) • косек (5) • … Словарь синонимов

диагональ — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN diagonal … Справочник технического переводчика

ДИАГОНАЛЬ — отрезок прямой, соединяющий две вершины многоугольника (или многогранника), не лежащие на одной стороне (или на одной грани) … Большая политехническая энциклопедия

Источник

Многоугольники

Многоугольник — это геометрическая фигура, ограниченная замкнутой ломаной линией, не имеющей самопересечений.

Что называется диагональю многоугольника

Звенья ломаной называются сторонами многоугольника, а её вершины — вершинами многоугольника.

Углами многоугольника называются внутренние углы, образованные соседними сторонами. Число углов многоугольника равно числу его вершин и сторон.

Многоугольникам даются названия по количеству сторон. Многоугольник с наименьшим количеством сторон называется треугольником, он имеет всего три стороны. Многоугольник с четырьмя сторонами называется четырёхугольником, с пятью — пятиугольником и т. д.

Обозначение многоугольника составляют из букв, стоящих при его вершинах, называя их по порядку (по часовой или против часовой стрелки). Например, говорят или пишут: пятиугольник ABCDE :

Что называется диагональю многоугольника

В пятиугольнике ABCDE точки A, B, C, D и E — это вершины пятиугольника, а отрезки AB, BC, CD, DE и EA — стороны пятиугольника.

Выпуклые и вогнутые

Многоугольник называется выпуклым, если ни одна из его сторон, продолженная до прямой линии, его не пересекает. В обратном случае многоугольник называется вогнутым:

Что называется диагональю многоугольника

Периметр

Сумма длин всех сторон многоугольника называется его периметром.

Что называется диагональю многоугольника

Периметр многоугольника ABCDE равен:

Если у многоугольника равны все стороны и все углы, то его называют правильным. Правильными многоугольниками могут быть только выпуклые многоугольники.

Диагональ

Диагональ многоугольника — это отрезок, соединяющий вершины двух углов, не имеющих общей стороны. Например, отрезок AD является диагональю:

Что называется диагональю многоугольника

Единственным многоугольником, который не имеет ни одной диагонали, является треугольник, так как в нём нет углов, не имеющих общих сторон.

Если из какой-нибудь вершины многоугольника провести все возможные диагонали, то они разделят многоугольник на треугольники:

Что называется диагональю многоугольника

Треугольников будет ровно на два меньше, чем сторон:

где t — это количество треугольников, а n — количество сторон.

Разделение многоугольника на треугольники с помощью диагоналей используется для нахождения площади многоугольника, так как чтобы найти площадь какого-нибудь многоугольника, нужно разбить его на треугольники, найти площадь этих треугольников и полученные результаты сложить.

Источник

Многоугольники

Что называется диагональю многоугольникаОпределение многоугольника
Что называется диагональю многоугольникаДиагонали n – угольника
Что называется диагональю многоугольникаВнешний угол многоугольника
Что называется диагональю многоугольникаСвойства углов треугольника
Что называется диагональю многоугольникаСвойства углов многоугольника
Что называется диагональю многоугольникаСвойства углов правильного n – угольника
Что называется диагональю многоугольникаДоказательства теорем о свойствах углов многоугольника

Что называется диагональю многоугольника

Определение многоугольника

Рассмотрим n отрезков

причём таких, что два любых отрезка, имеющих общий конец, не лежат на одной прямой (рис.1).

Что называется диагональю многоугольника

В случае, когда точки A1 и An +1 совпадают, ломаную линию называют замкнутой ломаной линией (рис. 2), в противном случае её называют незамкнутой (рис.1).

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Число диагоналей n – угольника равно

Что называется диагональю многоугольника

Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника

ФигураРисунокОписание
Диагональ
многоугольника
Что называется диагональю многоугольникаДиагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника
Диагонали
n – угольника, выходящие из одной вершины
Что называется диагональю многоугольникаДиагонали, выходящие из одной вершины
n – угольника, делят n – угольник на
n – 2 треугольника
Все диагонали
n – угольника
Что называется диагональю многоугольника
Диагонали n – угольника, выходящие из одной вершины
Что называется диагональю многоугольника

Диагонали, выходящие из одной вершины n – угольника, делят n – угольник на n – 2 треугольника

Все диагонали n – угольника
Что называется диагональю многоугольника

Число диагоналей n – угольника равно

Что называется диагональю многоугольника

Внешний угол многоугольника

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Свойства углов треугольника

Сумма углов треугольника равна 180°

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним

Сумма углов треугольника равна 180°

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним

Свойства углов многоугольника

ФигураРисунокФормулировка теоремы
Углы треугольникаЧто называется диагональю многоугольника

Сумма углов многоугольника равна

Что называется диагональю многоугольника

Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°

Сумма углов многоугольника равна

Что называется диагональю многоугольника

ФигураРисунокФормулировка теоремы
Углы
n – угольника
Что называется диагональю многоугольника
Внешние углы n – угольника
Что называется диагональю многоугольника

Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°

Свойства углов правильного n – угольника

Все углы правильного n – угольника равны

Что называется диагональю многоугольника

Все внешние углы правильного
n – угольника
равны

Что называется диагональю многоугольника

Все углы правильного n – угольника равны

Что называется диагональю многоугольника

ФигураРисунокФормулировка теоремы
Углы правильного
n – угольника
Что называется диагональю многоугольника
Внешние углы правильного n – угольника
Что называется диагональю многоугольника

Все внешние углы правильного
n – угольника
равны

Что называется диагональю многоугольника

Доказательства свойств углов многоугольника

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Что называется диагональю многоугольника

Получим n треугольников:

Что называется диагональю многоугольника

что и требовалось доказать.

Что называется диагональю многоугольника

В соответствии рисунком 6 справедливы равенства

Источник

Геометрическая фигура многоугольник

Многоугольником называется геометрическая фигура, которая со всех сторон ограничена замкнутой ломаной линией. При этом количество звеньев ломаной не должно быть меньше трех. Каждая пара отрезков ломаной имеет общую точку и образует углы. Количество углов совместно с количеством отрезков ломаной являются основными характеристиками многоугольника. В каждом многоугольнике количество звеньев ограничивающей замкнутой ломаной совпадает с количеством углов.

Что называется диагональю многоугольника

Сторонами в геометрии принято называть звенья ломаной линии, которая ограничивает геометрический объект. Вершинами называют точки соприкосновения двух соседних сторон, по количеству которых получают свои названия многоугольники.

Если замкнутая ломаная состоит из трех отрезков, она носит название треугольника; соответственно, из четырех отрезков — четырехугольником, из пяти — пятиугольником и пр.

Для обозначения треугольника или четырехугольника пользуются заглавными латинскими буквами, обозначающими его вершины. Буквы называют по порядку — по часовой стрелке или против нее.

Что называется диагональю многоугольника

Основные понятия

Описывая определение многоугольника, следует учитывать некоторые смежные геометрические понятия:

Как уже упоминалось выше, названия многоугольных геометрических строятся исходя из количества вершин. Если у фигуры их количество равняется n, она носит название n-угольника:

Любой выпуклый n-угольник можно поделить на треугольники. При этом количество треугольников бывает меньше количества сторон на 2.

Что называется диагональю многоугольника

Виды фигур

Треугольник

Это многоугольник с тремя вершинами и тремя отрезками, соединяющими их. При этом точки соединения отрезков не лежат на одной прямой.

Точки соединения отрезков — это вершины треугольника. Сами отрезки называются сторонами треугольника. Общая сумма внутренних углов каждого треугольника равняется 180°.

По соотношениям между сторонами все треугольники можно подразделять на несколько видов:

Кроме того, принято различать следующие треугольники:

Что называется диагональю многоугольника

Четырехугольник

Четырехугольником называется плоская фигура, имеющая 4 вершины и 4 отрезка, которые их последовательно соединяют.

На одной прямой не может находиться сразу три вершины четырехугольника.

Видео

Дополнительную информацию о многоугольниках вы найдете в этом видео.

» width=»560″ height=»314″ allowfullscreen=»allowfullscreen»>

Источник

Многоугольники

Что называется диагональю многоугольника

Часть плоскости, ограниченная замкнутой ломаной линией, называется многоугольником.

Отрезки этой ломаной линии называются сторонами многоугольника. АВ, ВС, CD, DE, ЕА (рис. 1) — стороны многоугольника ABCDE. Сумма всех сторон многоугольника называется его периметром.

Многоугольник называется выпуклым, если он расположен по одну сторону от любой своей стороны, неограниченно продолженной за обе вершины.

Многоугольник MNPKO (рис. 1) не будет выпуклым, так как он расположен не по одну сторону прямой КР.

Что называется диагональю многоугольника

Мы будем рассматривать только выпуклые многоугольники.

Углы, составленные двумя соседними сторонами многоугольника, называются его внутренними углами, а вершины их — вершинами многоугольника.

Отрезок прямой, соединяющий две несоседние вершины многоугольника, называется диагональю многоугольника.

АС, AD — диагонали многоугольника (рис. 2).

Углы, смежные с внутренними углами многоугольника, называются внешними углами многоугольника (рис. 3).

В зависимости от числа углов (сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д.

Два многоугольника называются равными, если их можно совместить наложением.

Вписанные и описанные многоугольники

Если все вершины многоугольника лежат на окружности, то многоугольник называется вписанным в окружность, а окружность — описанной около многоугольника (рис).

Что называется диагональю многоугольника

Если все стороны многоугольника являются касательными к окружности, то многоугольник называется описанным около окружности, а окружность называется вписанной в многоугольник (рис).

Подобие многоугольников

Два одноимённых многоугольника называются подобными, если углы одного из них соответственно равны углам другого, а сходственные стороны многоугольников пропорциональны.

Одноимёнными называются многоугольники, имеющие одинаковое число сторон (углов).

Сходственными называются стороны подобных многоугольников, соединяющие вершины соответственно равных углов (рис).

Что называется диагональю многоугольника

Так, например, чтобы многоугольник ABCDE был подобен многоугольнику A’B’C’D’E’, необходимо, чтобы: ∠A = ∠A’ ∠B = ∠B’ ∠С = ∠С’ ∠D = ∠D’ ∠Е = ∠Е’ и, кроме того, AB /A’B’ = BC /B’C’ = CD /C’D’ = DE /D’E’ = EA /E’A’.

Отношение периметров подобных многоугольников

Сначала рассмотрим свойство ряда равных отношений. Пусть имеем, например, отношения: 2 /1 = 4 /2 = 6 /3 = 8 /4 =2.

Найдем сумму предыдущих членов этих отношений, затем — сумму их последующих членов и найдём отношение полученных сумм, получим:

То же самое мы получим, если возьмём ряд каких-нибудь других отношений, например: 2 /3 = 4 /6 = 6 /9 = 8 /12 = 10 /15= 2 /3 Найдем сумму предыдущих членов этих отношений и сумму последующих, а затем найдём отношение этих сумм, получим:

В том и другом случае сумма предыдущих членов ряда равных отношений относится к сумме последующих членов этого же ряда, как предыдущий член любого из этих отношений относится к своему последующему.

Мы вывели это свойство, рассмотрев ряд числовых примеров. Оно может быть выведено строго и в общем виде.

Теперь рассмотрим отношение периметров подобных многоугольников.

Пусть многоугольник ABCDE подобен многоугольнику A’B’C’D’E’ (рис).

Что называется диагональю многоугольника

Из подобия этих многоугольников следует, что

На основании выведенного нами свойства ряда равных отношений можем написать:

Что называется диагональю многоугольника

Следовательно, периметры подобных многоугольников относятся как их сходственные стороны.

Отношение площадей подобных многоугольников

Пусть ABCDE и A’B’C’D’E’ — подобные многоугольники (рис).

Что называется диагональю многоугольника

Что называется диагональю многоугольника; Что называется диагональю многоугольника

Так как вторые отношения этих пропорций равны, что вытекает из подобия многоугольников, то Что называется диагональю многоугольника

Используя свойство ряда равных отношений получим:

Что называется диагональю многоугольника, или Что называется диагональю многоугольника

где S и S’ — площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S /S’ = ( AВ /A’В’ ) 2

Площадь произвольного многоугольника

Пусть требуется вычислить площадь произвольного четырёхугольника АВDС (рис).

Что называется диагональю многоугольника

Проведём в нём диагональ, например АD. Получим два треугольника АВD и АСD, площади которых вычислять умеем. Затем находим сумму площадей этих треугольников. Полученная сумма и будет выражать площадь данного четырёхугольника.

Если нужно вычислить площадь пятиугольника, то поступаем таким же образом: из одной какой-нибудь вершины проводим диагонали. Получим три треугольника, площади которых можем вычислить. Значит, можем найти и площадь данного пятиугольника. Так же поступаем при вычислении площади любого многоугольника.

Площадь проекции многоугольника

Напомним, что углом между прямой и плоскостью называется угол между данной прямой и ее проекцией на плоскость (рис.).

Что называется диагональю многоугольника

Теорема. Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла, образованного плоскостью многоугольника и плоскостью проекции.

Каждый многоугольник можно разбить на треугольники, сумма площадей которых равна площади многоугольника. Поэтому теорему достаточно доказать для треугольника.

Пусть ΔАВС проектируется на плоскость р. Рассмотрим два случая:

а) одна из сторон ΔАВС параллельна плоскости р;

б) ни одна из сторон ΔАВС не параллельна р.

Рассмотрим первый случай: пусть [АВ] || р.

Что называется диагональю многоугольника

По свойству проекции имеем ΔАВС1 (cong) ΔА’В’С’, и поэтому

Проведем [CD1] ⊥ [AB] и отрезок D1C1. Тогда [D1C1] ⊥ [AB], a \( \overbrace\) = φ есть величина угла между плоскостью ΔАВС и плоскостью р1. Поэтому

и, следовательно, SΔ A’B’C’ = SΔ ABC cos φ.

Перейдем к рассмотрению второго случая. Проведем плоскость р1 || р через ту вершину ΔАВС, расстояние от которой до плоскости р наименьшее (пусть это будет вершина А).

Спроектируем ΔАВС на плоскости р1 и р (рис.); пусть его проекциями будут соответственно ΔАВ1С1 и ΔА’В’С’.

Что называется диагональю многоугольника

SΔ A’B’C’ = SΔAB 1 C 1 = SΔADC 1 — SΔADB 1 = ( SΔADC — SΔADB) cos φ = SΔ ABC cos φ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *