Что называется аргументом функции и значением функции в точке

Функции

Если две переменные величины находятся между собой в такой зависимости, что каждому значению одной переменной соответствует строго определённое значение другой, то первая величина называется аргументом, а вторая его функцией.

Функция — это зависимая переменная величина. Аргумент — это независимая переменная. Зависимость функции от аргумента называется функциональной зависимостью.

Если нужно указать на тот факт, что y функция от x, не акцентируя внимания на то, в какой именно зависимости находится функция от аргумента, то пишут просто:

Иногда, чтобы показать, что y зависит от x, пишут просто:

Обратите внимание, что вместо y и x могут использоваться любые другие буквы.

Значение y, соответствующее заданному значению x, называют значением функции. Все значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют множество значений функции. Для функции f приняты следующие обозначения:

D(f) — область определения функции
(множество значений аргумента).

E(f) — множество значений функции.

Пример. Возьмём формулу нахождения расстояния по скорости и времени:

где S — это расстояние, v — скорость, а t — время. Если взять скорость, равную 50 км/ч, то каждому неотрицательному значению t будет соответствовать строго определённое значение S:

t (ч)11,522,53
S (км)5075100125150

Источник

Построение графиков функций

Что называется аргументом функции и значением функции в точке

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида Что называется аргументом функции и значением функции в точкеобласть определения выглядит так

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Что называется аргументом функции и значением функции в точке

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Что называется аргументом функции и значением функции в точке

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: Что называется аргументом функции и значением функции в точке

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Что называется аргументом функции и значением функции в точке

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции Что называется аргументом функции и значением функции в точке

Упростим формулу функции:

Задача 2. Построим график функцииЧто называется аргументом функции и значением функции в точке

Выделим в формуле функции целую часть:

Что называется аргументом функции и значением функции в точке

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Что называется аргументом функции и значением функции в точке

Что называется аргументом функции и значением функции в точке

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины Что называется аргументом функции и значением функции в точке, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины Что называется аргументом функции и значением функции в точке, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Что называется аргументом функции и значением функции в точке

xy
02
11

Что называется аргументом функции и значением функции в точке

xy
00
12

Что называется аргументом функции и значением функции в точке

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

Что называется аргументом функции и значением функции в точке

Задача 5. Построить график функции Что называется аргументом функции и значением функции в точке

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Что называется аргументом функции и значением функции в точке

Задача 6. Построить графики функций:

б) Что называется аргументом функции и значением функции в точке

г) Что называется аргументом функции и значением функции в точке

д) Что называется аргументом функции и значением функции в точке

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а) Что называется аргументом функции и значением функции в точке

Преобразование в одно действие типа f(x) + a.

Что называется аргументом функции и значением функции в точке

Сдвигаем график вверх на 1:

Что называется аргументом функции и значением функции в точке

б)Что называется аргументом функции и значением функции в точке

Что называется аргументом функции и значением функции в точке

Сдвигаем график вправо на 1:

Что называется аргументом функции и значением функции в точке

Что называется аргументом функции и значением функции в точке

Сдвигаем график вправо на 1:

Что называется аргументом функции и значением функции в точке

Сдвигаем график вверх на 2:

Что называется аргументом функции и значением функции в точке

г) Что называется аргументом функции и значением функции в точке

Преобразование в одно действие типа Что называется аргументом функции и значением функции в точке

Что называется аргументом функции и значением функции в точке

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Что называется аргументом функции и значением функции в точке

Что называется аргументом функции и значением функции в точке

д) Что называется аргументом функции и значением функции в точке

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Что называется аргументом функции и значением функции в точке
Что называется аргументом функции и значением функции в точке
Что называется аргументом функции и значением функции в точке

Сжимаем график в два раза вдоль оси абсцисс:

Что называется аргументом функции и значением функции в точке
Что называется аргументом функции и значением функции в точке

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

Что называется аргументом функции и значением функции в точке
Что называется аргументом функции и значением функции в точке

Отражаем график симметрично относительно оси абсцисс:

Источник

Что такое Функция?

Что называется аргументом функции и значением функции в точке

7 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.

1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.

Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.

Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.

2. Функция — это определенное действие над переменной.

Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.

В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:

Что называется аргументом функции и значением функции в точке

В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.

3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.

Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида

Что называется аргументом функции и значением функции в точке

область определения выглядит так:

И записать это можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.

Источник

Функция, аргумент, значение функции

В стилистике учебников и пособий по математике определения понятий: «функция, аргумент функции, значение функции» звучат примерно так:

В общем виде функция записывается так:

у = f(x) (538.1)

Начнем с элементарного:

Неизвестная величина

Как правило жизнь ставит перед нами не очень сложные задачи и решаем мы их с легкостью. Например: если один пирожок стоит 3 рубля, а мы хотим купить 2 пирожка, то сколько для этого нам потребуется денег?

Ответ на первый взгляд очевиден и вроде бы никакого особого решения не требует: 6 рублей. Но давайте подойдем к этой ситуации с точки зрения математики и запишем соответствующие уравнения сначала с необходимыми пояснениями в скобках:

х (требуемое количество денег) = 2 (пирожка) · 3 (рубля/пирожок) (538.2.1)

х (требуемое количество денег) = 6 (рублей) (538.2.2)

При умножении пирожки сокращаются и остаются только рубли. Если использовать чистую математическую запись, т.е. без пояснения в скобках, то это будет выглядеть так:

х = 2 · 3 (538.3.1)

х = 6 (538.3.2)

Как правило в начальных классах школы на этом даже акцент не делается, детям просто предлагаются к решению задачи по определению неизвестной величины в виде:

5 + 2, определите сумму (538.4.1)

9 : 3, определите частное (538.4.2)

Но на мой взгляд это не правильно. Детей, начиная с начальных классов, следует готовить к определению неизвестной величины и в подобных случаях формулировка задания должна выглядеть примерно так:

Постоянная неизвестная величина

В приведенных выше уравнениях (538.3 и 4) неизвестная величина х может иметь только одно значение. Поэтому такая величина называется постоянной (хотя варианты обсчета продавцом не исключены, но к теме данной статьи это никак не относится).

При этом уравнений, при решении которых требуется определить эту самую постоянную неизвестную величину, может быть бесконечное количество. Вот только на решение этих самых уравнений это никак не влияет.

Если в уравнении, каким бы сложным оно ни было, есть только одна неизвестная величина, то такая величина является постоянной.

Вообще-то постоянные неизвестные величины более правильно обозначать литерами а, b, c и др. Впрочем в уравнениях с одной неизвестной, а потому постоянной величиной это большого значения не имеет и неизвестная величина часто обозначается литерой х.

Переменные неизвестные величины

Иногда жизнь ставит перед нами более сложные задачи. Например, мы по-прежнему хотим купить 2 пирожка, но еще не определились с выбором, так как пирожков с различной начинкой на рынке много и цена у них разная, от 3 до 30 рублей, а денег в кармане мало.

у = 2 · х (538.5)

Т.е если один пирожок стоит 3 рубля, то нам для приобретения 2 пирожков потребуется как и прежде 6 рублей, а если мы хотим купить 2 пирожка, стоящих по 30 рублей каждый, то нам потребуется уже 60 рублей. Это конечно еще не высшая математика, но очень близко к тому.

Область определения функции

Как правило простые уравнения с одной неизвестной постоянной величиной вида (538.4.1.2) имеют только одно решение. В уравнениях с двумя неизвестными вида (538.5) решений может быть столько, сколько существует возможных значений переменной х. Т.е. если на рынке есть пирожки с 10 различными ценами, то нам, чтобы определить все возможные значения у, нужно решить уравнение (538.5) 10 раз, а если пирожки со 100 различными ценами, то 100 раз.

А все это ценовое разнообразие от 3 до 30 рублей и будет областью определения функции

Примечание: Вообще в данном случае возможно еще большее ценовое разнообразие, если цена пирожков будет изменяться с шагом в 1 копейку.

Функция

Даже такие относительно простые уравнения как (538.5), решать 100 раз очень долго. А ведь уравнения бывают гораздо более сложными, а область определения практически бесконечной.

При этом математическая запись следующего вида:

у = f(x) = x · 2 (538.5.2)

График функции

А еще это означает, что решать уравнение для всех возможных значений х нет необходимости. Для функции можно построить график, т.е. отобразить зависимость у от х визуально. Для этого используется плоская система координат с осями х и у. Соответственно по оси х откладывается значение переменной х, а по оси у значение переменной у, определенной для этого значения х.

В простых случаях, т.е. когда между переменными существует линейная зависимость, для построения графика достаточно знать координаты 2 точек. Например для функции f(x) = 2х в пределах от 0 до 4 график будет выглядеть так:

Что называется аргументом функции и значением функции в точке

Рисунок 538.1. График функции f(x) = 2x.

Таким образом, для всех промежуточных значений х, а это могут быть не только натуральные (т.е. целые) числа, мы можем определять значения у по графику. Для этого достаточно провести вертикальную линию из точки, обозначающей значение х, до графика (показан на рисунке 538.1 синей линией), а затем провести горизонтальную линию из точки пересечения вертикальной линии и графика. Пересечение горизонтальной линии с осью у покажет значение переменной у для соответствующего значения х. На рисунке 538.1 подобные действия не показаны, чтобы не усложнять график.

А теперь несколько слов о том, зачем все это может понадобиться например при изучении теоретической механики или теории сопротивления материалов.

При расчете строительных конструкций, например балок, необходимо определить значение поперечных сил и моментов, действующих в различных сечениях балки, а также углы поворота и перемещения нейтральной оси балки. Для этого строятся эпюры поперечных сил, моментов, углов поворота и прогиба. Так вот эти эпюры и есть графики соответствующих функций.

При этом длина балки l измеряется по оси х, соответственно нижний предел функции х = 0, а верхний предел функции х = l.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *