Что называется аргументом что называется функцией

Функции

Если две переменные величины находятся между собой в такой зависимости, что каждому значению одной переменной соответствует строго определённое значение другой, то первая величина называется аргументом, а вторая его функцией.

Функция — это зависимая переменная величина. Аргумент — это независимая переменная. Зависимость функции от аргумента называется функциональной зависимостью.

Если нужно указать на тот факт, что y функция от x, не акцентируя внимания на то, в какой именно зависимости находится функция от аргумента, то пишут просто:

Иногда, чтобы показать, что y зависит от x, пишут просто:

Обратите внимание, что вместо y и x могут использоваться любые другие буквы.

Значение y, соответствующее заданному значению x, называют значением функции. Все значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют множество значений функции. Для функции f приняты следующие обозначения:

D(f) — область определения функции
(множество значений аргумента).

E(f) — множество значений функции.

Пример. Возьмём формулу нахождения расстояния по скорости и времени:

где S — это расстояние, v — скорость, а t — время. Если взять скорость, равную 50 км/ч, то каждому неотрицательному значению t будет соответствовать строго определённое значение S:

t (ч)11,522,53
S (км)5075100125150

Источник

Что такое Функция?

Что называется аргументом что называется функцией

7 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.

1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.

Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.

Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.

2. Функция — это определенное действие над переменной.

Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.

В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:

Что называется аргументом что называется функцией

В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.

3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.

Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида

Что называется аргументом что называется функцией

область определения выглядит так:

И записать это можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.

Источник

Функция. Аргумент. Прямая и обратная зависимость

Содержание

Вокруг нас происходит множество событий или процессов, которые можно измерить. При этом величина одних зависит от величины каких-либо других.

Так, например, от того, сколько мы испишем страниц в тетради, зависит количество оставшихся в стержне чернил. Чем больше кружек наполнено компотом, тем меньше его останется в кастрюле. Чем больше мама оставит денег на обеды, тем больше можно на них купить мороженого. А чем сильнее велосипедист крутит педали, тем больше километров он проедет. Придумайте свои примеры?

В наших описанных выше примерах первые два имеют обратную зависимость, то есть при увеличении одной величины (количество страниц и кружек в наших случаях), уменьшается вторая (количество чернил и компота в кастрюле).

Что называется аргументом что называется функциейОбратная зависимость

Примеры с велосипедистом и мороженым имеют прямую зависимость, то есть при увеличении одной величины (скорость движения педалями и количество оставленных мамой денег) увеличивается и другая (пройденное расстояние и количество мороженого).

Что называется аргументом что называется функциейПрямая пропорциональность

Зависимость, которая показывает как одна величина связана с другой величиной, как раз и называется функцией.

Аргумент и функция

Зависимые и независимые переменные могут обозначаться и любыми другими буквами (латинскими или греческими).

Примеры аргумента и функции

Запись функции

Слово «функция» произошло от латинского слова functio – исполнение, осуществление. Это одно из главных понятий в математике, показывающее зависимость одних переменных величин от других. Понятие «величина» в данном случае может включать в себя совершенно любое число.

Переменные могут принимать как положительные, так и отрицательные значения.

Источник

Функция, аргумент, значение функции

В стилистике учебников и пособий по математике определения понятий: «функция, аргумент функции, значение функции» звучат примерно так:

В общем виде функция записывается так:

у = f(x) (538.1)

Начнем с элементарного:

Неизвестная величина

Как правило жизнь ставит перед нами не очень сложные задачи и решаем мы их с легкостью. Например: если один пирожок стоит 3 рубля, а мы хотим купить 2 пирожка, то сколько для этого нам потребуется денег?

Ответ на первый взгляд очевиден и вроде бы никакого особого решения не требует: 6 рублей. Но давайте подойдем к этой ситуации с точки зрения математики и запишем соответствующие уравнения сначала с необходимыми пояснениями в скобках:

х (требуемое количество денег) = 2 (пирожка) · 3 (рубля/пирожок) (538.2.1)

х (требуемое количество денег) = 6 (рублей) (538.2.2)

При умножении пирожки сокращаются и остаются только рубли. Если использовать чистую математическую запись, т.е. без пояснения в скобках, то это будет выглядеть так:

х = 2 · 3 (538.3.1)

х = 6 (538.3.2)

Как правило в начальных классах школы на этом даже акцент не делается, детям просто предлагаются к решению задачи по определению неизвестной величины в виде:

5 + 2, определите сумму (538.4.1)

9 : 3, определите частное (538.4.2)

Но на мой взгляд это не правильно. Детей, начиная с начальных классов, следует готовить к определению неизвестной величины и в подобных случаях формулировка задания должна выглядеть примерно так:

Постоянная неизвестная величина

В приведенных выше уравнениях (538.3 и 4) неизвестная величина х может иметь только одно значение. Поэтому такая величина называется постоянной (хотя варианты обсчета продавцом не исключены, но к теме данной статьи это никак не относится).

При этом уравнений, при решении которых требуется определить эту самую постоянную неизвестную величину, может быть бесконечное количество. Вот только на решение этих самых уравнений это никак не влияет.

Если в уравнении, каким бы сложным оно ни было, есть только одна неизвестная величина, то такая величина является постоянной.

Вообще-то постоянные неизвестные величины более правильно обозначать литерами а, b, c и др. Впрочем в уравнениях с одной неизвестной, а потому постоянной величиной это большого значения не имеет и неизвестная величина часто обозначается литерой х.

Переменные неизвестные величины

Иногда жизнь ставит перед нами более сложные задачи. Например, мы по-прежнему хотим купить 2 пирожка, но еще не определились с выбором, так как пирожков с различной начинкой на рынке много и цена у них разная, от 3 до 30 рублей, а денег в кармане мало.

у = 2 · х (538.5)

Т.е если один пирожок стоит 3 рубля, то нам для приобретения 2 пирожков потребуется как и прежде 6 рублей, а если мы хотим купить 2 пирожка, стоящих по 30 рублей каждый, то нам потребуется уже 60 рублей. Это конечно еще не высшая математика, но очень близко к тому.

Область определения функции

Как правило простые уравнения с одной неизвестной постоянной величиной вида (538.4.1.2) имеют только одно решение. В уравнениях с двумя неизвестными вида (538.5) решений может быть столько, сколько существует возможных значений переменной х. Т.е. если на рынке есть пирожки с 10 различными ценами, то нам, чтобы определить все возможные значения у, нужно решить уравнение (538.5) 10 раз, а если пирожки со 100 различными ценами, то 100 раз.

А все это ценовое разнообразие от 3 до 30 рублей и будет областью определения функции

Примечание: Вообще в данном случае возможно еще большее ценовое разнообразие, если цена пирожков будет изменяться с шагом в 1 копейку.

Функция

Даже такие относительно простые уравнения как (538.5), решать 100 раз очень долго. А ведь уравнения бывают гораздо более сложными, а область определения практически бесконечной.

При этом математическая запись следующего вида:

у = f(x) = x · 2 (538.5.2)

График функции

А еще это означает, что решать уравнение для всех возможных значений х нет необходимости. Для функции можно построить график, т.е. отобразить зависимость у от х визуально. Для этого используется плоская система координат с осями х и у. Соответственно по оси х откладывается значение переменной х, а по оси у значение переменной у, определенной для этого значения х.

В простых случаях, т.е. когда между переменными существует линейная зависимость, для построения графика достаточно знать координаты 2 точек. Например для функции f(x) = 2х в пределах от 0 до 4 график будет выглядеть так:

Что называется аргументом что называется функцией

Рисунок 538.1. График функции f(x) = 2x.

Таким образом, для всех промежуточных значений х, а это могут быть не только натуральные (т.е. целые) числа, мы можем определять значения у по графику. Для этого достаточно провести вертикальную линию из точки, обозначающей значение х, до графика (показан на рисунке 538.1 синей линией), а затем провести горизонтальную линию из точки пересечения вертикальной линии и графика. Пересечение горизонтальной линии с осью у покажет значение переменной у для соответствующего значения х. На рисунке 538.1 подобные действия не показаны, чтобы не усложнять график.

А теперь несколько слов о том, зачем все это может понадобиться например при изучении теоретической механики или теории сопротивления материалов.

При расчете строительных конструкций, например балок, необходимо определить значение поперечных сил и моментов, действующих в различных сечениях балки, а также углы поворота и перемещения нейтральной оси балки. Для этого строятся эпюры поперечных сил, моментов, углов поворота и прогиба. Так вот эти эпюры и есть графики соответствующих функций.

При этом длина балки l измеряется по оси х, соответственно нижний предел функции х = 0, а верхний предел функции х = l.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Источник

Параграф 2. Повторение и расширение сведений о функции.

Работу выполнил: Косярский А.А. студент группы 45.2

Пункт 2.1. Понятие числовой функции. Простейшие свойства числовых функций.

1. Понятие числовой функции

2. График функции

Что называется аргументом что называется функцией
Графиком функции f называется множество всех точек координатной плоскости
с координатами (x; f (x)), где первая координата x
«пробегает» всю область определения функции, а вторая координата
равна соответствующему значению функции f в точке x

3. Возрастающие и убывающие функции

Что называется аргументом что называется функцией
Функция f(x) возрастающая на множестве P:
если x2 > x1, то f(x2) > f(x1)
для любых x1 и x2, лежащих во множестве P
(при увеличении аргумента соотвествующие точки графика поднимаются)

Что называется аргументом что называется функцией
Функция f(x) убывающая на множестве P:
если x2 > x1, то f(x2)

4. Чётные и нечётные функции

Что называется аргументом что называется функцией

Функция f(x) чётная:
если f(-x) = f(x)
для любых x из области определения.
График чётной функции симметричен относительно Oy

Объяснение и обоснование

1. Понятие функции. С понятием функции вы ознакомились в курсе алгебры.
Напомним, что зависимость переменной y от переменной x называется функцией, если
каждому значению x соответствуе единственное значение y.
В курсе алгебры и начал математического анализа мы будем пользоваться
следующим определением числовой функции.

Числовой функцией с областью определения D называется зависимость,
при которой каждому числу x из множества D ставится в соответствие
единственное число y.

Функции обозначают латинскими (иногда греческими) буквами. Рассмотрим
произвольную функцию f. Число y, соответствующее числу x (на рисунке 9 это
показано стрелкой), называют значением функции f в точке x и обозначают f (x).

Чаще всего функцию задают с помощью какой-либо формулы. Если нет
дополнительных ограничений, то областью определения функции, заданной
формулой, считается множество всех значений переменной, при которых эта
формула имеет смысл.

Например, если функция задана формулой y = √x + 1, то её область
определения: x ≥ 0, то есть D(y) = [0;+∞), а область значений:
y ≥ 1, то есть E(y) = [1;+∞).

Функция может задаваться не только при помощи формул, но и сс помощью
таблицы, графика или словесного описания. Например, на рисунке 10
графически задана функция y = f(x) с областью определения
D(f) = [-1;3] и множеством значений E(f) = [1;4]

Что называется аргументом что называется функцией

3. Возрастающие и убывающие функции. Важными характеристиками
функций являются их возрастание и убывание.

На рисунке 15 приведён график ещё одной возрастающей функции
y = x³. Действительно, при x2 > x1 имеем x2³ > x1³,
то есть f(x2) > f(x1).

Функция f(x) называется убывающей на множестве P, если
большему значению аргумента из этого множества соответствует
меньшее значение функции.

То есть для любых двух значений x1 и x2 из множества P, если
x2 > x1, то f(x2) x1 имеем
-2⋅

Что называется аргументом что называется функцией

отметим, что для возрастающих и убывающих функций выполняются
свойства, обратные утверждениям, содержащимся в определении.

Например, если x² > 8, то есть x² > 2², то,
учитывая возрастание функции f(x) = x², получаем x > 2.

4. Чётные и нечётные функции. Рассмотрим функции, области
определения которых симметричны относительно начала координат, то
есть содержат вместе с каждым числом x и число (-x). Для таких
функций вводятся понятия чётности и нечётности.
Функция f называется чётной, если для любого x из её области определения
f(-x) = f(x).

Если функция f(x) чётная, то ее графику вместе с каждой точкой Что называется аргументом что называется функцией
M с координатами (x;y) = (x;f(x)) принадлежит также точка M1 с
координатами (-x;y) = (-x;f(-x))=(-x;f(x)). Точки M и M1
расположены симметрично относительно оси Oy (рис. 18), поэтому
и весь график чётной функции расположен симметрично относительно оси OY.

Если функци f(x) нечётная, то её графику вместе с каждой точкой M с Что называется аргументом что называется функцией
координатами (x;y) = (x;f(x)) принадлежит также точка M1 с
координатами (-x;y) = (-x;f(-x))=(-x;-f(x)). Точки M и M1
расположены симметрично относительно начала координат (рис. 19), поэтому
и весь график нечётной функции расположен симметрично относительно начала координат.

Например, график нечётной функции y = 1/x (см. пункт 4 табл. 2) симметричен относительно
начала координат, то есть точки O.

ВОПРОСЫ ДЛЯ КОНТРОЛЯ:

ПРИМЕРЫ РЕШЕНИЯ ПРАКТИЧЕСКИХ ЗАДАНИЙ

УПРАЖНЕНИЯ К ПАРАГРАФУ

Что называется аргументом что называется функцией

5. Обоснуйте, что заданная функция является возрастающей (на её области определения):
1) y = 3x 2) y = x + 5 3) y = x³ 4) y = x 5 5) y = √(x)

8. Докажите, что на заданном промежутке функция убывает:
1) y = 3/x, где x 0

9. Докажите, что функция y = x² на промежутке [0; + ∞) возрастает, а на промежутке (- ∞;0] убывает.

11. Используя утверждения, приведённые в примере 6:
1) Обоснуйте, что уравнение x³ + x = 10 имеет единственный корень x = 2;
2) Подберите корень уравнения √(x) + x = 6 и докажите, что других корней это уравнение не имеет.

12. Обоснуйте, что заданная функция является чётной:
1) y = x 6 2) y = 1/x² + 1 3) y = √ (x² + 1) 4) y = √ (|x| + x 4 )

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *