Что называется апертурой интерференции
Методические указания к практическим занятиям по курсу общей физики
Главная > Методические указания
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
Временная когерентность связана с когерентностью вдоль луча. Когерентность — это способность к интерференции. Рассмотрим две точки на одном луче как два возможных вторичных источника света для наблюдения интерференционной картины. При этом расстояние от каждой из точек до мысленного экрана предполагается одинаковым.
Возможный вариант оптической схемы приведен на рис. 23. Здесь A и B — две выбранные вдоль луча точки, в которые мысленно поместим полупрозрачные пластинки для получения интерференционной картины на экране C. По условию задачи AC = BC.
L || = .
Эта формула часто используется при решении задач.
Наряду с понятием «продольная когерентность», используется близкое ему понятие «временная когерентность». Фаза светового поля в точке A (см. рис. 23) в момент времени t равна фазе поля в точке B в момент t+, где — время распространения света от A до B. Следовательно, когерентность поля в точках A и B в один момент времени t точно такая же, как когерентность в одной точке B, но в два разных момента времени t и t+.
= L || = = = = .
Можно посмотреть на когерентность светового поля в точках A и B несколько иначе. Длина волны шумит. Следовательно, шумит число длин волн, которое укладывается на отрезке AB. Пропорционально шумит разность фаз в точках A и B. Результат интерференции зависит от разности фаз. Если разность фаз в точках A и B шумит больше, чем на 2, то поле в этих точках некогерентно, если меньше, то поле когерентно. В такой форме условие когерентности поля в точках A и B не требует расположения этих точек вдоль луча или рассмотрения поля в них в один момент времени.
Подчеркнем, что условие «разность фаз шумит больше, чем на 2» не следует путать с условием «разность фаз больше, чем 2».
Пространственная когерентность — это когерентность света в направлении, перпендикулярном лучу (поперек луча). Получается, что это когерентность разных точек поверхности равной фазы. Но на поверхности равной фазы разность фаз равна нулю и, казалось бы, не шумит. Это не совсем так. Реальный источник света не точечный, поэтому поверхность равных фаз испытывает шумовые повороты, оставаясь в каждый момент времени перпендикулярной направлению на излучающий в данный момент точечный источник света, расположенный в пределах реального источника света. Повороты поверхности равной фазы вызваны тем, что свет в точку наблюдения приходит то от одной, то от другой точки источника.
Видность интерференционной картины
с протяженным источником света
Рассмотрим оптическую схему опыта Юнга (рис. 24). Если источник света не точечный и имеет размер b поперек луча, то интерференционная картина несколько «смазывается», потому что каждый точечный источник, из которых состоит источник света, дает свою интерференционную картину, и эти картины несколько сдвинуты друг относительно друга.
Будем считать, что источник света представляет собой полоску постоянной ширины и яркости. Картина полностью «смажется», если интерференционные картины от крайних точек источника будут сдвинуты относительно друг друга ровно на одну полосу интерференции, что соответствует изменению разности хода на одну длину волны .
Из рис. 24 видно, что при переходе от одной точки источника света к другой разность хода может измениться только слева от экрана с двумя щелями. Выясним, какому перемещению b точечного источника на рис. 24 соответствует изменение разности хода на .
b = ,
при котором интерференционные полосы полностью «смажутся».
Связь пространственной когерентности и
углового размера источника света
Если интерференционная картина на экране (см. рис. 24) «смазывается» при размере источника b, то L 2 — размер поперечной когерентности света в месте расположения экрана с двумя щелями. Действительно, две щели — это две точки на фронте волны, которые являются вторичными источниками света. Интерференционная картина пропадает, если вторичные источники света некогерентны. Они некогерентны, если расположены на расстоянии, большем или равном длине пространственной когерентности.
Перепишем теперь формулу для размера источника в виде соотношения
= .
Перепишем последнюю формулу в следующем виде:
= .
=
означает, что максимальная апертура интерференции равна отношению длины волны к размеру источника света. Если апертура больше, то нет интерференции. Свет из источника размером b выходит когерентно в любой угол /b.
Рассмотрим две точки, через которые проходит свет. Если проекции этих точек на направление светового луча удалены друг от друга меньше, чем на длину продольной когерентности, и если их проекции на плоскость, перпендикулярную лучу, удалены друг от друга меньше, чем на радиус поперечной когерентности, то данные две точки принадлежат одному объему когерентности.
Рассмотрим еще раз схему опыта Юнга и проследим перемещение объема когерентности вдоль лучей.
Сначала объем когерентности «распространяется» из источника света в угол /b (рис. 25,а).
Затем края этого объема «просачиваются» через две щели (рис. 25,б). Если объем когерентности не накрывает сразу обе щели, то не будет интерференционной картины на экране, так как в этом случае недостаточна пространственная когерентность на фронте, проходящем через две щели, и щели как вторичные источники света некогерентны.
После щелей получаются два объема одной когерентности (рис. 25,в).
Эти два объема приходят в интересующую нас точку A экрана либо почти одновременно, заметно перекрываясь, как на рис.25,г, либо приходят по очереди, как на рис. 25,д. В первом случае в данной точке экрана интерференционная картина «не смазана», а во втором — «смазана». В этих двух вариантах видность картины определяется временной когерентностью, длиной объема когерентности вдоль луча.
Интерференция двух волн возможна тогда и только тогда, когда свет, пройдя двумя путями, попадает на экран так, что объем когерентности перекрывается сам с собой. Чем больше он перекрывается, тем больше видность интерференционной картины.
Совместное влияние временной и пространственной когерентности
на интерференционную картину
При равных интенсивностях интерферирующих волн зависимость видности интерференционной картины от номера полосы позволяет оценить порознь пространственную и временную когерентность света в месте расположения вторичных источников интерферирующего света или оценить размер и немонохроматичность источника света.
Видность вблизи нулевой полосы определяется только пространственной когерентностью, а изменение видности с номером полосы определяется временной когерентностью источника света.
Локализация интерференционной картины
Интерференция света, отраженного от тонкой прозрачной пленки, является важным частным случаем получения интерференционной картины методом деления амплитуды. В случае протяженного источника света интерференционная картина может быть получена либо очень близко к поверхности пленки, либо очень далеко от пленки, как говорят, на бесконечности. Соответственно говорят об интерференционной картине локализованной на поверхности пленки и на бесконечности. Как показывает опыт, в промежуточных положениях экрана интерференционная картина оказывается размытой.
Удаленный объект отображается собирающей линзой в ее фокальной плоскости. Оказывается, интерференционную картину, локализованную на бесконечности, можно также наблюдать в фокальной плоскости линзы.
Линза позволяет наблюдать и кольца Ньютона, локализованные в плоскости между плоской поверхностью стекла и соприкасающейся с ней выпуклой поверхностью линзы. Если экран физически поставить между соприкасающимися поверхностями, то до одной из них свет просто не дойдет, и интерференции не будет.
Линза отображает локализованную в плоскости касания интерференционную картину в виде колец Ньютона на экран по законам геометрической оптики:
= + ,
Здесь f — фокусное расстояние линзы, a — расстояние от плоскости локализации интерференционной картины до линзы, b — расстояние от линзы до изображения интерференционной картины на экране. Интерференционная картина в плоскости локализации играет роль светящегося тела.
Интерферируют те лучи, которые выходят из одной точки источника и попадают в одну точку плоскости локализации интерференционной картины. Неважно, что в этой плоскости нет экрана, и что после плоскости лучи расходятся. Линза собирает их на экране с той же разностью фаз, которую они имели в плоскости локализации интерференционной картины. Поэтому светлая полоса изображается в светлую, а темная в темную.
Интерференционную картину можно наблюдать вообще без экрана. При этом хрусталик глаза играет роль линзы, а сетчатка — роль экрана. Интерференционную картину, локализованную на бесконечности, можно рассматривать в подзорную трубу, а локализованную в другой плоскости можно рассматривать через окуляр, как рассматривают близко расположенные мелкие предметы.
Есть, правда, некоторое отличие между наблюдением интерференционной картины на экране и интерференционной картины локализованной в пространстве.
На экране интерференционную картину можно рассматривать с разных сторон. Для наблюдения интерференционной картины, локализованной в пространстве, линзу окуляра (или глаз) можно поставить только по ходу лучей, причем через линзу должны проходить оба интерферирующих луча, как, например, на рис.26. Если через линзу проходит только один из интерферирующих лучей (рис. 27), то изображения интерференционной картины не будет. Вместо полос будет серый фон освещения одним лучом.
Полосы равной толщины и полосы равного наклона
Полосы равной толщины и равного наклона наблюдаются при интерференции волн, отраженных от двух границ прозрачной пленки или плоскопараллельной пластинки.
Полосы равного наклона локализованы на бесконечности.
Полосы равной толщины локализованы в плоскости, отражающей пленки. В пределах ширины пленки можно считать, что интерференционная картина локализована там, где вам удобнее.
Для наблюдения полос равной толщины отражающие поверхности не обязательно должны быть идеально плоскопараллельны. Пара отражающих плоскостей может образовывать тонкий клин. Могут быть соприкасающиеся поверхности, одна или обе из которых сферические (кольца Ньютона).
Более того, две отражающих поверхности могут быть расположены в разных местах, как в интерферометре Майкельсона (рис.28). Здесь S — источник света, P — экран для наблюдения интерференции отраженных волн от зеркал 1 и 2, 3 — полупрозрачная пластинка. Если зеркало 2 мысленно отразить в полупрозрачной пластинке 3, то его изображение примет положение 2′. Вместе с зеркалом 2 мысленно отобразим в полупрозрачной пластинке и все лучи, идущие справа от нее к зеркалу 2 и от него обратно к полупрозрачной пластинке. Тогда на экран P свет будет приходить, как бы отражаясь от двух плоскостей 1 и 2′. Если дополнить интерферометр двумя линзами, как это обычно делается (рис. 29), то, в зависимости от расстояния между линзой L 2 и экраном P, можно наблюдать полосы равной толщины (1/a 1 + 1/a 2 = 1/f 2 ) или полосы равного наклона (a 2 = f 2 ).
Дифракция — это огибание светом препятствий. Например, в опыте Юнга свет за каждой щелью распространяется не только в том направлении, в котором он распространялся до щели.
Возможность дифракции связана с тем, что свет за каждой щелью распространяется так, как если бы в плоскости щели находилась совокупность вторичных точечных источников света (принцип Гюйгенса). Правда, эти вторичные источники охотнее излучают в направлении, в котором свет распространялся до щели, чем в другие направления.
В произвольную точку за щелью свет от разных вторичных источников приходит в разных фазах. В каких–то направлениях при сложении этих волн в результате интерференции получаются колебания поля E с большой амплитудой, а в каких–то с малой амплитудой. В соответствии с этим говорят, что свет при дифракции на щели в одних направлениях распространяется, а в других — нет.
Что называется апертурой интерференции
Необходимы более веские доказательства того, что свет при распространении ведет себя как волна. Любому волновому движению присущи явления интерференции и дифракции. Для того чтобы быть уверенным в том, что свет имеет волновую природу, необходимо найти экспериментальные доказательства интерференции и дифракции света.
Сложение волн. Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Что при этом происходит?
Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды. Если мы бросим в воду два камня, создав этим две кольцевые волны, то нетрудно заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто бы другой волны совсем не существовало. Точно так же любое число звуковых волн может одновременно распространяться в воздухе, ничуть не мешая друг другу. Множество музыкальных инструментов в оркестре или голосов в хоре создают звуковые волны, одновременно улавливаемые нашим ухом. Причем ухо в состоянии отличить один звук от другого.
Теперь посмотрим более внимательно, что происходит в местах, где волны накладываются друг на друга. Наблюдая волны на поверхности воды от двух брошенных в воду камней, можно заметить, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если две волны встречаются в одном месте гребнями, то в этом месте возмущение поверхности воды усиливается.
Если же, напротив, гребень одной волны встречается с впадиной другой, то поверхность воды не будет возмущена.
Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую (т. е. с учетом их знаков) сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.
Интерференция. Сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний, называется интерференцией.
Выясним, при каких условиях имеет место интерференция волн. Для этого рассмотрим более подробно сложение волн, образуемых на поверхности воды.
Результат сложения волн, приходящих в точку M, зависит от разности фаз между ними. Пройдя различные расстояния d1 и d2, волны имеют разность хода Δd = d2—d1. Если разность хода равна длине волны λ, то вторая волна запаздывает по сравнению с первой ровно на один период (как раз за период волна проходит путь, равный длине волны). Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.
Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:
Условие минимумов. Пусть теперь на отрезке Δd укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Разность фаз оказывается равной п, т. е. колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, т. е. в рассматриваемой точке колебаний нет (рис. 121). То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.
Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:
Когерентные волны. Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебаний была постоянной.
Источники, удовлетворяющие этим условиям, называются когерентными. Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.
Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться. Поэтому амплитуда результирующих колебаний с течением времени изменяется. В результате максимумы и минимумы перемещаются в пространстве и интерференционная картина размывается.
Распределение энергии при интерференции. Волны несут энергию. Что же с этой энергией происходит при гашении волн друг другом? Может быть, она превращается в другие формы и в минимумах интерференционной картины выделяется тепло? Ничего подобного. Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции происходит перераспределение энергии в пространстве. Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает совсем.
ИНТЕРФЕРЕНЦИЯ СВЕТОВЫХ ВОЛН
Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света. Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.
Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.
Условие когерентности световых волн. Причина состоит в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства. Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.
Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить Постоянство разности фаз от двух независимых источников. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими длину около метра. И такие цуги волн от обоих источников налагаются друг на друга. В результате амплитуда колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты друг относительно друга по фазе. Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной. Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.
Интерференция в тонких пленках. Тем не менее интерференцию света удается наблюдать. Курьез состоит в том, что ее наблюдали очень давно, но только не отдавали себе в этом отчета.
Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина или нефти на поверхности воды. «Мыльный пузырь, витая в воздухе. зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен). Именно интерференция света делает мыльный пузырь столь достойным восхищения.
Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 123), одна из которых (1) отражается от наружной поверхности пленки, а вторая (2) —от внутренней. При этом происходит интерференция световых волн — сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.
Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, обеспечивается тем, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два, а затем эти части сводятся вместе и интерферируют.
Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, отличающихся друг от друга длиной (углы падения предполагаются одинаковыми), требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.
Кольца Ньютона. Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название кольца Ньютона.
Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда волна определенной длины падает почти перпендикулярно на плоско-выпуклую линзу (рис. 124). Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга. Вызываемые ими колебания происходят в одной фазе.
Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.
Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.
Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.
При переходе света из одной среды в другую длина волны изменяется. Это можно обнаружить так. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.
Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как v = λv, то при этом должна уменьшиться в n раз либо частота, либо длина волны. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.
Интерференция электромагнитных волн. На опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных (радио) волн.
Генератор и приемник располагают друг против друга (рис. 125). Затем подводят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.
Явление объясняется следующим образом. Часть волны из рупора генератора непосредственно попадает в приемный рупор. Другая же ее часть отражается от металлической пластины. Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн. Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна ли разность хода целому числу длин волн или нечетному числу полуволн.