Что находится в цитоплазме бактерий
Что находится в цитоплазме бактерий
Цитоплазма бактерий представляет собой коллоидный матрикс, служащий для реализации жизненно важных функций. Цитоплазма большинства бактерий содержит ДНК, рибосомы и запасные гранулы; остальное пространство занимает коллоидная фаза. Её основные составляющие — растворимые ферменты и растворимые РНК (мРНК и тРНК). Разнообразные органеллы, характерные для эукариотической клетки, у бактерий отсутствуют, а их функции выполняет бактериальная ЦПМ, отделяющая цитоплазму от клеточной стенки. У подавляющего числа бактерий цитоплазма относительно неподвижна, но у видов Streptococcus, Proteus, Clostridium имеются специальные трубочки — рапидосомы, аналогичные микротрубочкам простейших.
Бактериальный геном
В бактериальной клетке нет ядерной мембраны, ДНК сконцентрирована в цитоплазме в виде клубка. Поскольку в эукариотических клетках ДНК обычно находится в ядре, то по аналогии ДНК бактерий назвали нуклеоидом [от лат. nucleus, ядро + греч. eidos, сходство]. Её также называют генофором, или бактериальной хромосомой. Генофор бактерий представлен двойной спиральной, кольцевой, ковалентно замкнутой суперспирализованной молекулой ДНК. Она составляет 2-3% сухой массы клетки (более 10% по объёму). Генофор не содержит гистонов. Объём генетической информации, кодируемой в генофоре, различается в зависимости от вида бактерии (например, геном Escherichia coli кодирует примерно 4000 различных полипептидов). У бактерий может присутствовать дополнительная ДНК в виде включений. Эти включения, или плазмиды, несут ряд различных генов, кодирующих дополнительные свойства бактерий, но информация, содержащаяся в плазмидах, не является абсолютно необходимой для бактериальной клетки.
Бактериальные рибосомы
Бактериальные рибосомы — сложные глобулярные образования, состоящие из различных молекул РНК и связанных с ними белков. Всё образование функционирует как локус синтеза полипептидов. В зависимости от интенсивности роста бактериальная клетка может содержать от 5000 до 50 000 рибосом. Диаметр бактериальных рибосом около 16-20 нм. Скорость их осаждения при ультрацентрифугировании составляет 70 S (единиц Свёдберга), тогда как у эукариотических клеток — 80 S. Рибосомы бактерий состоят из двух субъединиц с коэффициентом седиментации 50 S и 30 S (у эукариотов 40 S и 60 S). Объединение субъединиц происходит перед началом трансляции. Рибосомы прокариот и эукариотов имеют сходную молекулярную структуру и механизмы функционирования, но различаются, помимо размеров, по составу белков и белковых факторов. Эти различия делают рибосомы эукариотов практически резистентными к действию антибиотиков, блокирующих синтез белка у бактерий.
Запасные гранулы бактерии
Запасные гранулы содержат временный избыток метаболитов; наличие и количество гранул изменяется в зависимости от вида бактерий и их метаболической активности. В виде гранул могут запасаться полисахариды (крахмал, гликоген, гранулёза), жиры (триглицериды, сходные с жирами высших животных, запасаются у дрожжей рода Candida), воска — у микобактерий и нокардий; полимеры р-оксимасляной кислоты (например, в клетках Bacillus megaterium), полифосфаты (волютин) у Spirillum volutans и Corynebacterium diphtheriae, сера (у бактерий, окисляющих сульфиды), кристаллизованные белки (например, токсичный для насекомых протоксин у Bacillus thuringiensis).
Что находится в цитоплазме бактерий
Один из основных признаков прокариотической клетки — отсутствие внутреннего разделения, обеспечиваемого элементарными мембранами. По сути, единственная мембранная система прокариотической клетки — ЦПМ, входящая в состав клеточной оболочки, часто сложно устроенная и проникающая поперечными складками глубоко в цитоплазму. В составе любой стабильной бактериальной клетки выделяют условные компартменты — поверхностные структуры, клеточную оболочку и цитоплазму.
Поверхностные структуры бактерий
Основные поверхностные структуры бактериальной клетки — капсула, жгутики и микроворсинки. Их наличие — относительно стабильный признак, используемый для идентификации бактерий.
Капсула бактерий
Клеточную оболочку многих бактерий окружает слой аморфного, сильно обводнённого вещества. Этот покров выполняет важные функции: делает оболочку клетки (состоящей из клеточной стенки и ЦПМ) более плотной и прочной, предохраняет бактерии от воздействия бактерицидных факторов, обеспечивает адгезию на различных субстратах, может содержать запасы питательных веществ.
Организация капсул бактерий. Основную роль в организации капсул бактерий играет ЦПМ. Выделяют микрокапсулы (выявляемые только при электронной микроскопии в виде слоя мукополисахаридных микрофибрилл) и макрокапсулы (обнаруживают при световой микроскопии). У некоторых бактерий полимеры клеточной оболочки, выделяемые наружу, свободно располагаются вокруг неё, образуя слизистый слой. Капсулированные бактерии могут превращаться в бескапсульные варианты и, поскольку первые образуют мукоидные или гладкие (S), а бескапсульные — шероховатые (R) колонии, это явление известно как S- и R-диссоциация. Капсула и слизистый слой не препятствуют поступлению и выходу различных веществ из бактериальной клетки, а также плохо удерживают красители.
Окраска капсул бактерий. Для облегчения микроскопирования капсулы можно сделать видимыми, проведя негативную окраску мазка по Бурри-Гинсу или Хиссу либо с помощью реакции набухания по Нойфельду (см. ниже).
Состав капсул бактерий. В состав большинства бактериальных капсул входят сложные полисахарид ды. Капсулы также могут содержать соединения азота (например, у пневмококков капсула состоит из полисахаридов, глюкозамина и глюкуроновой кислоты), но могут и не содержать азот (например, капсулы лейконостоков состоят из декстрана, левулана, фруктозана и других полимеризованных моносахаров). Капсулы некоторых болезнетворных бактерий (например, Bacillus anthracis) формируют полисахариды и полипептиды, образованные мономерами D-глутаминовой кислоты. Поскольку D-аминокислоты устойчивы к воздействию протеаз, такая капсула лучше защищает бактерию от ферментативных воздействий фагоцитов.
Антигенные свойства капсул бактерий. Капсульные Аг (К-Аг) многих патогенных бактерий проявляют выраженные иммуногенные свойства (например, вакцины против пневмококковых и менингококковых инфекций готовят из материала капсулы). Связывание AT с капсулой изменяет её светопреломляющие характеристики, вызывая кажущееся набухание капсулы, видимое при соответствующих условиях освещения под микроскопом и известное как реакция Нойфельда.
Что находится в цитоплазме бактерий
• Нуклеоид бактерий выглядит как диффузная масса ДНК, однако для него характерна высокая упорядоченность и неслучайное расположение генов
• У бактерий нет нуклеосом, однако организации ДНК способствуют различные белки, связанные с нуклеоидом
• Подобно тому как это имеет место для ядра и цитоплазмы эукариотической клетки, у бактерий транскрипция происходит по всей массе нуклеоида, трансляция — на его периферической зоне
• Важную роль в организации нуклеоида играет РНК полимераза
Фундаментальное отличие клеток прокариот от клеток эукариот заключается в отсутствии у них ядерной оболочки. Присутствие ядерной мембраны у эукариот обеспечивает существование компартментов, которые разделяют процессы транскрипции и трансляции. У прокариот эти процессы не разделены мембраной, и мРНК может транслироваться во время транскрипции. Одновременное протекание этих процессов имеет важные последствия для регуляции активности некоторых генов.
Как показано на рисунке ниже, хромосомальная ДНК бактерий имеет вид аморфной массы, нуклеоида, занимающего большую часть объема в центре цитоплазмы. Нуклеоид состоит из хромосомальной ДНК и связанных с ней белков. Бактерии не содержат нуклеосом, которые участвуют в упаковке ДНК хромосом эукариотов и архей. Однако бактериальная ДНК компактна и упакована с участием многочисленных белков, ассоциированных с нуклеоидом, которые перчислены на рисунке ниже.
Электронная микрофотография, демонстрирующая,
что нуклеоид представляет собой диффузную массу, находящуюся внутри клетки бактерии.
К числу наиболее важных из этих белков относятся топоизомеразы. Они контролируют суперспирализацию ДНК, которая играет важную роль в ее компактизации, и обеспечивают протекание таких процессов, как репликация и транскрипция, для которых требуется раскручивание молекулы ДНК. Белки семейства SMC, поддерживающие структурную организацию хромосом, также участвуют в организации нуклеоида. Об этом свидетельствует фенотип соответствующих мутантов, однако конкретный механизм их участия остается неясным.
В клетках эукариот белки, близкие к SMC, участвуют в скреплении хромосом между собой и их конденсации в митозе и мейозе. Эти белки различной природы, связанные с нуклеоидом, участвуют в поддержании необходимого уровня его суперспирализации и компактизации. Однако предстоит еще выяснить, каким образом достигается и поддерживается такое состояние гомеостаза нуклеоида.
Хотя нуклеоид обладает аморфной структурой, отдельные гены располагаются в нем упорядоченно. Положение генов в нуклеоиде отражает их относительное расположение на карте хромосомы. По счастью, первое подтверждение этого было получено при исследовании свойств мутантов бактерий В. subtilis, дефектных по гену spoIIIE. Мутант этого организма не способен правильно сегрегировать хромосому при асимметрическом делении, которое сопровождает ранние стадии образования споры. Вместо этого септа деления замыкается вокруг одной копии хромосомы. У этого мутанта определенные гены почти всегда попадают в небольшой компартмент, поблизости от полюса, в то время как другие из него всегда исключаются.
Это наблюдение позволяет предполагать, что до деления хромосома всегда находится в определенном месте и в определенной ориентации.
Прямые данные были получены в исследованиях с использованием гибридизации in situ и флуоресцентной метки (FISH). Этот метод позволяет непосредственно отслеживать положение в клетке определенных генов. Однако при его использовании, перед гибридизацией зонда с ДНК, необходима фиксация препаратов и проведение других жестких воздействий. Еще один подход заключается в использовании конъюгата зеленого флуоресцирующего белка с белком LacI, связывающимся с ДНК. Этот конъюгат может присоединяться к сайтам связывания, находящимся в разных местах клетки. На основании всех этих экспериментов было показано, что гены не диффундируют по бактериальной клетке свободно, а локализованы в определенных, строго ограниченных местах.
Вообще говоря, область хромосомы, содержащая oriC, находится на одном конце нуклеоида, а область, содержащая terC, — на противоположном. Гены, которые на генетической карте расположены между двумя этими точками, распределены по нуклеоиду более или менее пропорционально.
У бактерий в аппарате транскрипции используется одна каталитическая основная РНК-полимераза, состоящая из двух а-, одной b- и одной b-субъединиц. Специфичность промотора определяется на начальном уровне различными сигма (а) факторами, которые также необходимы для инициации транскрипции, однако после этого отщепляются от кора. Регуляция транскрипции осуществляется большим набором дополнительных регуляторов, которые обычно связываются с ДНК вблизи от промотора, с тем чтобы активировать или подавлять инициацию транскрипции. Другие факторы регуляции действуют на уровне терминации (прекращения) транскрипции или изменения стабильности мРНК.
Большая часть молекул основной РНК-полимеразы находится в нуклеоиде в центре клетки. Поэтому, вероятно, здесь в основном происходит транскрипция. Напротив, рибосомы и различные белки, принимающие участие в трансляции, сосредоточены по периферии клетки. Таким образом, даже при отсутствии ядерной оболочки, в бактериальной клетке транскрипция и трансляция пространственно разобщены, подобно тому как это имеет место в клетке эукариот. Однако существуют различные данные в пользу того, что иногда у бактерий транскрипция и трансляция тесно сопряжены друг с другом.
Эти данные не противоречат имеющимся результатам, которые свидетельствуют о том, что РНК-полимеразы и рибосомы локализованы в разных местах клетки. Возможно, что оба процесса происходят на границе центральной, или сердцевинной, и периферийной областях клетки. Пока мы мало знаем об организации центральной, или сердцевинной, и периферийной областей нуклеоида, так же как и о деталях общей организации этой структуры.
Белки, участвующие в организации нуклеоида Escherichia coli.
У большинства других бактерий вместо белков MukB, MukE и MukF присутствуют белки SMC (белки, поддерживающие структуру хромосом),
а также связанные с ними факторы, родственные когезину и конденсинам эукариот. Сегрегация хромосом после образования полярной септы при наступлении споруляции.
В холе споруляции В. subtilis клетки делятся асимметрично, образуя материнскую клетку и небольшую преспору.
Каждая клетка получает одну копию хромосомы. Сегрегация хромосом с образованием преспоры представляет собой двухэтапный процесс.
Вначале полярная разделительная септа замыкается вокруг хромосомы,
а затем белок SpoIIIE активно транспортирует оставшиеся 2/3 хромосомы в преспоровый компартмент.
У мутантов по гену spoIIIE только 1/3 хромосомы сегрегирует в преспору.
Анализ ДНК, захваченной в небольшой компартмент клеток мутанта по гену spoIIIE, показывает, что всегда захватывается специфический участок ДНК.
Это указывает на то, что до деления хромосома должна быть строго ориентирована и упорядочена.
На фотографиях, полученных во флуоресцентном микроскопе, представлены клетки спорулирующих spoIIIE-мутантов и клетки дикого типа, окрашенные на ДНК. Несмотря на отсутствие ядерной оболочки, аппараты транскрипции и трансляции локализуются в отдельных частях бактериальной клетки.
Представлены делящиеся клетки В. subtilis.
Они экспрессируют конъюгаты белка рибосомальной субъединицы RpsB с зеленым флуоресцирующим белком (GFP)
и субъединицы РНК-полимеразы RpoC с GFP-UV, обладающие зеленой и красной флуоресценцией соответственно.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Научная электронная библиотека
§ 3.1.4. Строение клетки
Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).
Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения
Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.
1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.
Повреждение наружной оболочки приводит к гибели клетки (цитолиз).
2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране
участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).
Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.
Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).
транспортировка питательных веществ и утилизация продуктов обмена клетки;
буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;
поддержание тургора (упругость) клетки;
все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.
4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).
Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления
Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.
При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери
Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.
В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.
В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.
Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.
– хранение генетической информации;
– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.
4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.
Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.
5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.
Функция рибосом: обеспечение биосинтеза белка.
6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).
Функции эндоплазматической сети:
– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;
– транспортировка продуктов синтеза ко всем частям клетки.
Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).
7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).
Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент
Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1
При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:
АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.
Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.
АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].
Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).
Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).
Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!
8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.
Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.
9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).
Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.
10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:
Пластиды бывают трех типов:
1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.
2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.
3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).
Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.
11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.
Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:
– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);
– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;
– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).
Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).
Более общая классификация клеток представлена на рис. 3.16.
Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.