Что на комплексном чертеже является характерным признаком параллельности прямых в пространстве
Взаимное положение двух прямых
Две прямые в пространстве могут пересекаться, скрещиваться и быть параллельными. Однако отсутствие второй проекции не дает возможности определить взаимное расположение прямых непосредственно по чертежу, не проведя предварительно вспомогательных построений. Так взаимное расположение прямых можно определить, если проградуировать прямые и сравнить интервалы, уклоны и отметки точек пересечения проекций прямых. Отметим признаки характерные для различных случаев расположения прямых.
Параллельные прямые – проекции прямых параллельны, уклоны (или интервалы) равны, и числовые отметки возрастают (или убывают) в одном направлении (рис. 14.10). При этом прямые, соединяющие точки с одинаковыми отметками, параллельны. Они являются горизонталями плоскости, проходящей через заданные прямые.
Рис.14.10 Рис.14.11 Рис.14.12
Пересекающиеся прямые– проекции прямых пересекаются в точке, которая, будучи отнесена к каждой из пересекающихся прямых, имеет одинаковую отметку (рис. 14.11). Это легко проверить, если прямые проградуированы. Отметим, что прямые, соединяющие точки с одинаковыми отметками, параллельны. Они являются горизонталями плоскости, проходящей через заданные пересекающиеся прямые.
Скрещивающиеся прямые – прямые, у которых признаки пересечения и параллельности отсутствуют (рис. 14.12). В этом случае прямые, соединяющие точки с одинаковыми отметками, не параллельны.
Пример. Через точку А(А3) провести горизонтальную прямую, пересекающую заданную прямую СД(С1Д7) (рис. 14.13).
Решение. Искомая горизонтальная прямая определяется точкой А(А3) и точкой В(В3) на прямой СD, имеющей такую же отметку.
Проградуируем прямую СD, применяя пропорциональное деление отрезка. Построенную проекцию В3 соединим с проекцией А3. Прямая АВ(А3В3) – искомая.
Глава 7. Изображение линий на чертежах
§ 41. Взаимное расположение двух прямых
Две прямые пространства могут иметь различное расположение (рис. 74). Они могут совпадать а ≡ b, быть параллельными с ׀׀ d, пересекаться m ∩ n и скрещиваться (k°/l).
Если две прямые параллельны, то на комплексном чертеже (рис. 75, а) их одноименные проекции параллельны.
Если две прямые пересекаются в некоторой точке М, то проекции этой точки должны принадлежать одноименным проекциям прямых, т. е. точки пересечения одноименных проекций пересекающихся прямых должны лежать на одной линии связи (рис. 75, б):
Если две прямые скрещиваются, то их одноименные проекции могут пересекаться в точках, не лежащих на одной линии связи (рис. 75, в):
В другом случае одна пара проекций будет пересекаться, а вторая может быть параллельными прямыми (рис. 75, г):
Следует обратить внимание на особые случаи определения взаимного расположения двух прямых в пространстве. Если одна из них (рис. 76, а) или обе (рис. 76, 6) окажутся профильными прямыми, то для определения взаимного расположения их необходимо построить третью, профильную проекцию этих прямых.
Если рассматривать рис. 76, а, можно ошибочно сделать предположение, что прямые АВ и CD пересекаются. Однако если построить профильные проекции этих прямых, станет видно, что они скрещиваются, так как точки 1 и 2 не совпадают, а являются фронтально конкурирующими точками.
Рассматривая рис. 76, б,можно ошибочно предположить, что прямые АВ и CD параллельны. Но после построения их профильных проекций увидим, что они скрещиваются, так как на этой плоскости проекции их пересекаются.
Прямые а и b горизонтально конкурирующие, имеют общую горизонтально проецирующую плоскость (рис. 77, б).
© Красноярский государственный аграрный университет
© Управление информационных технологий
© Кафедра Технологии машиностроения
Что на комплексном чертеже является характерным признаком параллельности прямых в пространстве
Прямые линии в пространстве могут быть параллельными , пересекающимися и скрещивающимися . Рассмотрим подробнее каждый случай.
1. Параллельные прямые линии.
Параллельными называются две прямые, которые лежат в одной плоскости и не имеют общих точек.
Рисунок 33. Параллельные прямые
Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых параллельны, но для оценки их взаимного положения необходимо сделать проекцию на профильную плоскость проекций (рис. 3 4 ). В рассмотренном случае проекции отрезков на плоскость П 3 пересекаются, следовательно, они не параллельны.
Решение этого вопроса можно получить сравнением двух соотношений если:
Рисунок 34. Прямые параллельные профильной плоскости проекций
2. Пересекающиеся прямые.
Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку.
Если прямые пересекаются, то точки пересечения их одноименных проекций находится на одной линии связи (рис. 3 5 ).
Рисунок 35. Пересекающиеся прямые
В общем случае справедливо и обратное утверждение, но есть два частных случая:
1. Если одна из прямых параллельна какой-либо из плоскостей проекций, например, профильной (рис.3 6 ), то по двум проекциям невозможно судить об их взаимном расположении. Так горизонтальная и фронтальная проекции отрезков АВ и СД пересекаются, причем точка пересечения проекций лежит на одной линии связи, однако сами отрезки не пересекаются, потому что точка пересечения профильных проекций этих отрезков не лежит на одной линии связи с точками пересечения их горизонтальной и фронтальной проекций.
2. Пересекающие прямые расположены в общей для них проецирующей плоскости, например перпендикулярной фронтальной плоскости проекций (рис. 3 7 ).
О взаимном расположении прямых, лежащих в этой плоскости, можно судить по одной горизонтальной проекции ( А 1В1 ∩ С 1D1 Þ АВ ∩ СD ).
3. Скрещивающиеся прямые
Скрещивающимися называются две прямые не лежащие в одной плоскости.
Если прямые не пересекаются и не параллельны между собой, то точка пересечения их одноименных проекций не лежит на одной линии связи.
Научная электронная библиотека
Пиралова О. Ф., Ведякин Ф. Ф.,
3.4. Взаимное положение прямых
Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны.
1. Пересекающиеся прямые
Пересекающимися прямыми называются такие прямые, которые имеют одну общую точку.
Из инвариантного свойства 5 следует, что проекция точки пересечения проекций прямых а и b есть точка пересечения этих прямых (рис. 3.4).
.
Рис. 3.4. Пересекающиеся прямые
2. Параллельные прямые
На рис. 3.5 изображены параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке).
Из инвариантного свойства 6 следует, что проекции параллельных прямых а и b параллельны.
Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки.
На комплексном чертеже (рис. 3.6) точки пересечения проекций этих прямых не лежат на одном перпендикуляре к оси Х (в отличие от пересекающихся прямых, см. рис. 3.4).
.
Рис. 3.5. Изображение параллельных прямых
.
Прямая в пространстве и ее изображение на чертеже с примерами
Содержание:
Задание прямой в пространстве:
Любая прямая в пространстве может быть задана:
В первом случае задаются координаты двух заданных точек, во втором — координаты точки и направляющим вектором.
Положение прямой в пространстве
Положение прямой в пространстве оценивается расположением ее относительно трех плоскостей проекций. При этом возможны следующие варианты.
Прямая не параллельная и не перпендикулярная ни к одной из плоскостей проекций называется прямой общего положения (рис.4.1).
Все точки прямой имеют различные координаты х, у, z, и ее проекции не параллельны и не перпендикулярны осям проекций х, у, z.
Прямая параллельная одной из плоскостей проекций. Все точки прямой имеют одну постоянную координату x, y или z. При этом одна из проекций прямой параллельна какой-то оси проекции. Такую прямую называют линией уровня (рис. 4.2).
На рис. 4.2, а прямая h (горизонталь) параллельна плоскости
На рисунке 4.2, б прямая f (фронталь) параллельна плоскости, ее горизонтальная проекция параллельна оси x:, координата у для всех точек постоянна, фронтальная проекция прямой проецируется в натуральную величину.
На рисунке 4.2, в прямая р параллельна плоскости П3, в этом случае ее горизонтальная проекция параллельна оси у, фронтальная проекция параллельна оси z, координата x для всех точек прямой постоянна, а профильная проекция прямой проекция прямой проецируется в натуральную величину.
Прямая перпендикулярна к одной из плоскостей проекций и параллельна двум другим плоскостям проекций. Если все точки прямой имеют две постоянные координаты то на одну из плоскостей проекций прямая проецируется в точку. Такую прямую называют проецирующей прямой (рис. 4.3).
На рис. 4.3, а прямая а перпендикулярна к плоскости И параллельна плоскостям и . Координаты x и у всех точек прямой постоянны. На горизонтальную плоскость проекции прямая а проецируется в точку (горизонтально-проецирующая прямая).
На рис. 4.3, б прямая b перпендикулярна к плоскости проекции П2 и параллельна плоскостям и . Координаты х и z всех точек постоянны. На фронтальную плоскость прямая b проецируется в точку (фронтально-проецирующая прямая).
На рис. 4.3, в прямая с перпендикулярна к плоскости проекции и параллельна плоскостям и . Координаты у и z всех точек прямой постоянны. На профильную плоскость прямая с проецируется в точку (профильно-проецирующая прямая).
Принадлежность точки прямой
Признаком принадлежности точки некоторой прямой является принадлежность проекций точки одноименным проекциям этой прямой. Так на рис. 4.4 точка А принадлежит отрезку прямой СВ, так как проекции точки А расположены на одноименных проекциях отрезка прямой СВ ().
Следы прямой
Следом прямой называется точка пересечения прямой с плоскостью проекции. Горизонтальным следом прямой называют точку пересечения прямой с горизонтальной плоскостью проекций (рис. 4.5). Горизонтальный след обозначают обычно буквой М. При этом у координата z точки М равна нулю. Следовательно, для нахождения горизонтального следа прямой на ней определяют точку с нулевой координатой z (рис. 4.5).
Фронтальным следом прямой называют точку пересечения прямой с фронтальной плоскостью проекции (рис. 4.5). Обозначают фронтальный след чаще всего буквой N. Координата у точки N равна нулю. Следовательно, для нахождения фронтального следа N прямой на ней определяют точку, имеющую нулевую координату у. Профильным следом прямой называют точку пересечения прямой с профильной плоскостью проекции. Обозначают профильный след обычно буквой Р. Координата х точки Р равна нулю.
Пересекая плоскости проекции, прямая переходит из одной четверти (квадранта) пространства в другую. Линия общего положения и линия уровня может пройти через три четверти пространства; линия уровня и проецирующая линия — через две четверти.
Длина отрезка прямой и углы наклона прямой к плоскостям проекции. Способ прямоугольного треугольника
Отрезок прямой, параллельной какой-либо плоскости проекции, проецируется на данную плоскость без искажения (в натуральную величину) (рис. 4.6, а и 4.6, б).
Так, отрезок АВ параллелен плоскости (рис. 4.6, а), следовательно, длина отрезка равна его горизонтальной проекции . Угол β между осью х и горизонтальной проекцией отрезка определяет угол наклона отрезка АВ к плоскости.
Отрезок CD параллелен плоскости (рис. 4.6, б), следовательно, длина отрезка равна длине его фронтальной проекции Угол α определяет угол наклона отрезка CD к плоскости .
Отрезок KF параллелен плоскости (рис. 4.6, в), следовательно, длина отрезка равна длине его профильной проекции . Углы наклона отрезка к плоскостям и определяют соответственно углы α и β.
Так на рис. 4.7 один катет вспомогательного треугольника равен горизонтальной проекции отрезка а другой – — разности координат z концов отрезка (точек А и В) . Гипотенуза определяет действительную длину отрезка АВ. Угол α при вершине определяет угол наклона отрезка АВ к плоскости .
Теорема о проецировании прямого угла
Для того чтобы прямой угол проецировался на плоскость проекций в натуральную величину необходимо и достаточно, чтобы, по крайней мере, одна его сторона была параллельна этой плоскости проекции, а вторая сторона не перпендикулярна к ней.
На рис. 4.8 дано: ; плоскость . Доказать, что .
Для доказательства через прямую а (проекции и ) проводим дополнительную плоскость Σ. Прямая b перпендикулярна к плоскости Σ и параллельна плоскости . Плоскости принадлежит проекция прямой.
Отсюда следует, что прямая тоже перпендикулярна к плоскости Σ. Прямая а принадлежит плоскости Σ, следовательно, перпендикулярна к , т.е. прямой угол проецируется без искажения.
Взаимное положение прямых в пространстве
Две прямые в пространстве могут быть параллельными, пересекающимися или скрещивающимися. Если две прямые пересекаются, то точки пересечения одноименных проекций лежат на линии проекционной связи (рис. 4.9, а).
Если две прямые параллельны, то их одноименные проекции параллельны (рис. 4.9, б). Это утверждение справедливо, если прямые занимают общее положение.
Если две прямые не параллельны и не пересекаются, то есть не лежат в одной плоскости, то они являются скрещивающимися (рис. 4.9, в).
Взаимное положение двух прямых, в том случае, если одна из них является профильной прямой, устанавливается при помощи третьей проекции.
На рис. 4.10 изображены две скрещивающиеся прямые, хотя их горизонтальные и фронтальные проекции пересекаются, а профильные — параллельны между собой.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.