Что на графике изображает кривая растущая слева направо

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике 📈 функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Что на графике изображает кривая растущая слева направо

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Что на графике изображает кривая растущая слева направоНа рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

Пример №2. Найти нули функции у=f(x) по заданному графику.

Что на графике изображает кривая растущая слева направо

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Что на графике изображает кривая растущая слева направо

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Что на графике изображает кривая растущая слева направо

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Что на графике изображает кривая растущая слева направо

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Источник

Построение графиков функций

Что на графике изображает кривая растущая слева направо

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида Что на графике изображает кривая растущая слева направообласть определения выглядит так

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Что на графике изображает кривая растущая слева направо

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Что на графике изображает кривая растущая слева направо

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: Что на графике изображает кривая растущая слева направо

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Что на графике изображает кривая растущая слева направо

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции Что на графике изображает кривая растущая слева направо

Упростим формулу функции:

Задача 2. Построим график функцииЧто на графике изображает кривая растущая слева направо

Выделим в формуле функции целую часть:

Что на графике изображает кривая растущая слева направо

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Что на графике изображает кривая растущая слева направо

Что на графике изображает кривая растущая слева направо

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины Что на графике изображает кривая растущая слева направо, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины Что на графике изображает кривая растущая слева направо, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Что на графике изображает кривая растущая слева направо

xy
02
11

Что на графике изображает кривая растущая слева направо

xy
00
12

Что на графике изображает кривая растущая слева направо

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

Что на графике изображает кривая растущая слева направо

Задача 5. Построить график функции Что на графике изображает кривая растущая слева направо

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Что на графике изображает кривая растущая слева направо

Задача 6. Построить графики функций:

б) Что на графике изображает кривая растущая слева направо

г) Что на графике изображает кривая растущая слева направо

д) Что на графике изображает кривая растущая слева направо

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а) Что на графике изображает кривая растущая слева направо

Преобразование в одно действие типа f(x) + a.

Что на графике изображает кривая растущая слева направо

Сдвигаем график вверх на 1:

Что на графике изображает кривая растущая слева направо

б)Что на графике изображает кривая растущая слева направо

Что на графике изображает кривая растущая слева направо

Сдвигаем график вправо на 1:

Что на графике изображает кривая растущая слева направо

Что на графике изображает кривая растущая слева направо

Сдвигаем график вправо на 1:

Что на графике изображает кривая растущая слева направо

Сдвигаем график вверх на 2:

Что на графике изображает кривая растущая слева направо

г) Что на графике изображает кривая растущая слева направо

Преобразование в одно действие типа Что на графике изображает кривая растущая слева направо

Что на графике изображает кривая растущая слева направо

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Что на графике изображает кривая растущая слева направо

Что на графике изображает кривая растущая слева направо

д) Что на графике изображает кривая растущая слева направо

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Что на графике изображает кривая растущая слева направо
Что на графике изображает кривая растущая слева направо
Что на графике изображает кривая растущая слева направо

Сжимаем график в два раза вдоль оси абсцисс:

Что на графике изображает кривая растущая слева направо
Что на графике изображает кривая растущая слева направо

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

Что на графике изображает кривая растущая слева направо
Что на графике изображает кривая растущая слева направо

Отражаем график симметрично относительно оси абсцисс:

Источник

Обратная пропорциональность. Гипербола

Сейчас мы будем говорить об обратной пропорциональности, или другими словами об обратной зависимости, как о функции.

Мы закрепим понятие функции и научимся работать с коэффициентами и графиками.

А еще мы разберем несколько примеров построения графика функциигиперболы.

Обратная пропорциональность — коротко о главном

Определение:

Функция, описывающая обратную пропорциональность, – это функция вида \( \displaystyle y=\frac+b \), где \( k\ne 0\), \( x\ne 0\) и \( x\ne а\)

По-другому эту функцию называют обратной зависимостью.

Область определения и область значений функции:

График обратной пропорциональности (зависимости) – гипербола.

Что на графике изображает кривая растущая слева направо

Коэффициент \( \displaystyle k\)

\( \displaystyle k\) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).

Знак коэффициента \( \displaystyle k\) влияет на то, в каких четвертях расположен график:

если \( \displaystyle k>0\), то ветви гиперболы расположены в \( \displaystyle I\) и \( \displaystyle III\) четвертях;

если \( \displaystyle k Что на графике изображает кривая растущая слева направо

Коэффициент \( \displaystyle a\)

Если внимательно посмотреть на знаменатель, видим, что \( \displaystyle a\) – это такое число, которому не может равняться \( \displaystyle x\).

То есть \( x=a\) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции

Коэффициент \( b\)

Число \( b\) отвечает за смещение графика функции вверх на величину \( b\), если \( b>0\), и смещение вниз, если \( b

Пример 2

Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).

Напомню, что для этого надо найти корни соответствующего квадратного уравнения: \( \displaystyle <^<2>>+4-5=0\).

Я найду их устно с помощью теоремы Виета: \( \displaystyle <_<1>>=-5\), \( \displaystyle <_<2>>=1\). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».

Итак, получаем: \( \displaystyle <^<2>>+4-5=\left( x+5 \right)\left( x-1 \right)\), следовательно:

Пример 3

Ты уже попробовал решить сам? В чем загвоздка?

Наверняка в том, что в числителе у нас \( \displaystyle 2x\), а в знаменателе – просто \( \displaystyle x\).

Это не беда. Нам нужно будет сократить на \( \displaystyle \left( x+2 \right)\), поэтому в числителе следует вынести \( \displaystyle 2\) за скобки (чтобы в скобках \( \displaystyle x\) получился уже без коэффициента):

Ответ: \( \displaystyle y=2-\frac<5>\).

График обратной пропорциональности

Как всегда, начнем с самого простого случая: \( \displaystyle y=\frac<1>\).

Таблица обратной пропорциональности (зависимости)

Нарисуем точки на координатной плоскости:

Что на графике изображает кривая растущая слева направо

Теперь их надо плавно соединить, но как?

Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.

Это график гиперболы и выглядит он так:

Что на графике изображает кривая растущая слева направо

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.

Каждая из них стремится своими концами приблизиться к осям \( \displaystyle Ox\) и \( \displaystyle Oy\), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Что на графике изображает кривая растущая слева направо

Оно и понятно: так как \( \displaystyle x\ne 0\), график не может пересекать ось \( \displaystyle Oy\). Но и \( \displaystyle y\ne 0\), так что график никогда не коснется и оси \( \displaystyle Ox\).

Ну что же, теперь посмотрим на что влияют коэффициенты.

На что влияют коэффициенты

Рассмотрим такие функции:

Что на графике изображает кривая растущая слева направо

Ух ты, какая красота!

Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь?

Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси \( \displaystyle Ox\).

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например, \( \displaystyle y=\frac<1>+2\)?

В этом случае гипербола будет точно такой же, как обычная \( \displaystyle y=\frac<1>\), только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен \( x\)? Правильно, \( x\ne 1\). Значит, график никогда не достигнет прямой \( x=1\).

А чему не может быть равен \( y\)? Теперь \( y\ne 2\). Значит, теперь график будет стремиться к прямой \( y=2\), но никогда ее не пересечет.

Итак, теперь прямые \( x=1\) и \( y=2\) выполняют ту же роль, которую выполняют координатные оси для функции \( \displaystyle y=\frac<1>\).

Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Что на графике изображает кривая растущая слева направо

Более подробно о том, как строятся такие графики, мы выучим чуть позже.

А теперь попробуй решить несколько примеров для закрепления.

Примеры

1. На рисунке изображен график функции \( \displaystyle y=\frac\). Определите \( k\).

Что на графике изображает кривая растущая слева направо

2. На рисунке изображен график функции \( \displaystyle y=\frac\). Определите \( k\)

Что на графике изображает кривая растущая слева направо

3. На рисунке изображен график функции \( \displaystyle y=\frac<1>\). Определите \( a\).

Что на графике изображает кривая растущая слева направо

4. На рисунке изображен график функции \( \displaystyle y=\frac<1>+a\). Определите \( a\).

Что на графике изображает кривая растущая слева направо

5. На рисунке приведены графики функций \( \displaystyle y=\frac,\text< >y=\frac\) и \( y=\frac\).

Источник

Алгебра. Урок 5. Графики функций

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.

Что на графике изображает кривая растущая слева направо

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Декартова система координат

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) – горизонтальная ось.

Ось ординат (ось y ) – вертикальная ось.

Что на графике изображает кривая растущая слева направо

Функция

Прямая

Линейная функция – функция вида y = a x + b где a и b – любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :

Что на графике изображает кривая растущая слева направо

Парабола

Гипербола

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/Гипербола-1.png 346w,/wp-content/uploads/2017/01/Гипербола-1-150×150.png 150w,/wp-content/uploads/2017/01/Гипербола-1-300×300.png 300w,/wp-content/uploads/2017/01/Гипербола-1-176×176.png 176w,/wp-content/uploads/2017/01/Гипербола-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/Гипербола-1.png»>

Если k 0, ветви гиперболы проходят через II и IV четверти.

Квадратный корень

Функция y = x имеет следующий график:

Возрастающие/убывающие функции

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Задание №11 из ОГЭ 2020. Типовые задачи и принцип их решения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *