Что можно увидеть с домашнего телескопа
Что можно увидеть с домашнего телескопа
Что можно увидеть в городе? Засвеченное городское небо не дает никакой возможности понаблюдать за малыми астрономическими объектами. Но это вовсе не означает, что телескопу в городском небе делать нечего. Давайте попробуем разобраться, что и как можно разглядеть в городском небе.
Какой нужен телескоп? Оптимальный вариант – телескоп, который наилучшим образом подходит для наблюдений в темном небе. В данном случае справедливы все утверждения, касающиеся размера апертуры и удобства использования. Но при этом не стоит забывать, что относительно большой телескоп влечет за собой достаточно хлопотный трудоемкий процесс сборки монтажа и разборки.
Кроме того он требует значительного количества места для собственного хранения. Для астрономических наблюдений в пределах города дополнительное внимание следует обратить на компьютеризированные модели телескопов с функцией автоматического наведения («Go-To»). Используя стандартный метод настройки телескопа для городских наблюдений вы, непременно столкнетесь с проблемами при наведении из-за недостатка видимых звезд, в то время как работа автоматической системы не зависит от засветки (при условии правильной привязки монтировки).
Где лучше расположиться?
Выбирая оптимальное расположение для астрономических наблюдений в городских условиях нельзя забывать о том, что тротуары и крыши нагреваются днем и излучают накопленное тепло ночью. В результате этого воздух над ними струится и портит картинку в телескопе. Исходя из этого, располагаться лучше всего на земле или траве, которая поглощает собой гораздо меньше тепла. Кроме того не стоит направлять трубу телескопа на объекты вблизи крыш других зданий или фонарей.
Что можно увидеть в городском небе?
Для дневных наблюдений очень хорошо подходит солнце. Но для наблюдений за светилом необходимо обязательно использовать специальный апертурный светофильтр, иначе есть большой риск серьезно навредить собственному зрению.
Теперь об объектах, за которыми лучше всего наблюдать в ночное время, даже в городских условиях:
• Луна – самый большой и яркий объект на земном небе после солнца. Ее поверхность покрыта многочисленными кратерами и выглядит очень ярко и красиво даже при наблюдении из города. Граница света, которая перемещается каждую ночь, позволяет подробно рассмотреть различные детали лунной поверхности.
• Планеты – сразу 4 достаточно ярких небесных объекта доступны для наблюдения городскими астрономами. Правда для качественного наблюдения за ними необходимо, чтобы атмосфера была спокойной. Кроме того, от наблюдателя потребуется большое терпение, так как ему придется буквально вылавливать минуты четкого изображения.
Еще один повод обязательно направить свой телескоп на Юпитер – это четыре галилеевых спутника, которые были названы так в честь Галилея, открывшего их еще в 1610 году.
Ио, Европа, Ганимед и Каллисто – можно легко рассмотреть не только в небольшой телескоп, но даже и в простой бинокль. Эти спутники вращаются вокруг Юпитера с разными периодами, от двух суток до двух недель. Перемены в их расположении заметны буквально в течение часа. Порой спутники выстраиваются в линию в стороне от планеты, порой какие-то из них скрываются за самим Юпитером, а порой на диске планеты становится заметно маленькое темное пятнышко, которое на самом деле являются тенью от перемещающегося на фоне планеты спутника.
Еще одно по-настоящему захватывающее зрелище, которое можно увидеть в нашей солнечной системе – это планета Сатурн и ее знаменитые кольца. Даже самые яркие и назойливые городские огни не способны затмить красоту этой маленькой, но крайне живописной планеты. Люди, которые случайно заглянули в телескоп и увидели там Сатурн, практически сразу начинают интересоваться, не спрятана ли в телескоп маленькая фотография окольцованной планеты.
Практически всех крайне удивляет то, что настолько далекий космический объект может выглядеть в телескопе так четко и ясно. Кольца Сатурна можно с легкостью рассмотреть в практически любой телескоп при увеличении 40 крат и выше. А средний или большой телескоп позволит рассмотреть слабые отличия в оттенках разных частей диска планеты.
Самые продвинутые модели телескопов позволят вам своими глазами увидеть даже тонкую темную тень от колец на диске этой планеты.
Во время ночных наблюдений при стабильной атмосфере городской астроном сможет рассмотреть два кольца – внешнее серое кольцо «А» и внутреннее белое кольцо «B». Станет ясно, что они разделены тонким темным провалом, известным как щель Кассини. Самые внимательные наблюдатели, скорее всего, разглядят и темно-серое кольцо «C» внутри кольца «B».
Всё о космосе
Что видно в телескоп?
Собственно, это один из первых вопросов, который возникает у большинства начинающих любителей астрономии. Кто-то думает, что в телескоп можно увидеть американский флаг, планеты размером с футбольный мяч, цветные туманности, как на фотографиях с Хаббла и т.д. Если Вы тоже так считаете, то я Вас сразу разочарую — флага не видно, планеты с горошинку, галактики и туманности — серые бесцветные пятна. Дело в том, что телескоп — это не просто труба для развлечений и получения «счастья в мозг». Это достаточно сложный оптический прибор, при правильном и вдумчивом использовании которого Вы получите массу приятных эмоций и впечатлений от просмотра космических объектов. Итак, что же видно через телескоп?
Один из важнейших параметров телескопа — это диаметр объектива (линзы или зеркала). Как правило, новички покупают недорогие телескопы диаметром от 70 до 130 мм — так сказать, для знакомства с небом. Разумеется, чем больше диаметр объектива телескопа, тем ярче будет изображение с тем же увеличением. Например, если сравнить телескопы диаметром 100 и 200 мм, то при одной и той же кратности (100x) яркость изображения будет отличаться в 4 раза. Разница особенно заметна при наблюдении слабых объектов — галактик, туманностей, звездных скоплений. Тем не менее, нередки случаи, когда новички приобретают сразу большой телескоп (250-300 мм), затем поражаясь его весу и размерам. Запомните: самый лучший телескоп тот, в который чаще наблюдают!
Итак, что же видно в телескоп? Во-первых, Луну. Наша космическая спутница представляет огромный интерес как для новичков, таки для продвинутых любителей. Даже небольшой телескоп диаметром от 60-70 мм покажет лунные кратеры и моря. При увеличении более 100х луна вообще не будет помещаться в поле зрения окуляра,тоесть будет виден лишь кусочек. По мере смены фаз вид лунных ландшафтов также будет меняться. Если же посмотреть в телескоп на молодую или старую луну (узкий серп), то можно увидеть так называемый пепельный свет — слабое свечение тёмной стороны луны, вызванное отражением земного света от лунной поверхности.
Примерный вид Луны через телескоп с увеличением 40х и окуляром с полем зрения 40 градусов.
Примерный вид Луны через телескоп с большим увеличением.
Также в телескоп можно увидеть все планеты солнечной системы. Меркурий в небольшие телескопы будет выглядеть просто как звезда, а в телескопы диаметром от 100 мм можно заметить фазу планеты — крохотный серпик. Увы, поймать Меркурий можно лишь в определенное время — планета недалеко отдаляется от Солнца, что затрудняет её наблюдение
Венера — она же утренняя вечерняя звезда — самый яркий объект на небе (после Солнца и луны). Яркость Венеры бывает настолько высокой, что её можно увидеть днем невооруженным глазом (только надо знать, куда смотреть). Даже в небольшие телескопы можно рассмотреть фазу планеты — она меняется от крохотного кружочка до большого серпа, подобного лунному. Кстати, иногда люди, впервые глядя на венеру в телескоп, думают, что это им луну показывают 🙂 Венера обладает плотной непрозрачной атмосферой, поэтому увидеть какие-либо детали не получится — просто белый серп.
Венера через любительский телескоп
Земля. Как ни странно, телескоп можно также использовать для наземных наблюдений. Достаточно часто люди покупают телескоп как в качестве космической гляделки, так и подзорной трубы. Для наземных наблюдений подойдут не все виды телескопов, а именно линзовые и зеркально-линзовые — они могут обеспечить прямое изображение, в то время как в зеркальных телескопах системы Ньютона изображение перевернутое.
Марс. да-да, тот самый, который виден каждый год 27 августа как две луны 🙂 И люди из года в год ведутся на эту дурацкую шутку, задалбливая вопросами знакомых астрономов 🙂 Ну что же, Марс даже в достаточно крупные телескопы виден лишь как небольшой кружочек, да и то лишь в период противостояний (раз в 2 года). Впрочем, в 80-90 мм телескопы вполне реально рассмотреть потемнения на диске планеты и полярную шапку.
Вид Марса через любительский телескоп диаметром от 150 мм.
Юпитер — пожалуй, именно с этой планеты и началась эпоха телескопических наблюдений. Взглянув в простой самодельный телескоп на Юпитер, Галилео Галилей обнаружил 4 спутника (Ио, Европа, Ганимед и Каллисто). В дальнейшем это сыграло огромную роль в развитии гелиоцентрической системы мира. В небольшие телескопы также можно рассмотреть несколько полос на диске Юпитера — это облачные пояса. Знаменитое Большое красное пятно вполне доступно для наблюдения в телескопы диаметром от 80-90 мм. Иногда спутники проходят перед диском планеты, отбрасывая на неё свои тени. Это также можно увидеть в телескоп.
Юпитер со спутниками — примерный вид через небольшой телескоп.
Сатурн одна из красивейших планет, каждый раз от вида которой у меня просто захватывает дух, хотя я её видел уже не одну сотню раз. Наличие кольца можно заметить уже в маленький 50-60 мм телескоп, но лучше всего наблюдать эту планету в телескопы диаметром от 150-200 мм, в которые с легкостью можно рассмотреть черный промежуток между кольцами (щель Кассини), облачные пояса и несколько спутников.
Сатурн при увеличении около 200х
Уран и Нептун — планеты, кружащие вдали от остальных планет, выглядят малые телескопы лишь в виде звёзд. Более крупные телескопы покажут крохотные голубовато-зеленоватые диски без каких-либо деталей.
Примерный вид Урана через 200 мм телескоп
Звездные скопления — это объекты для наблюдения через телескоп любого диаметра. Звездные скопления делятся на два типа — шаровые и рассеянные. Шаровое скопление выглядит как круглое туманное пятнышко, которое при просмотре в средний телескоп (от 100-130 мм) начинает рассыпаться на звезды. Число звезд в шаровых скоплениях очень велико и может достигать нескольких миллионов. Рассеянные же скопления представляют собой кучки звёзд, часто неправильной формы. Одно из самых известных рассеянных скоплений, видимое невооруженным глазом — Плеяды в созвездии Тельца.
Звёздное скопление М45 «Плеяды»
Двойное скопление h и χ Персея.
Примерный вид в телескопы от 75..80мм.
Шаровое скопление М13 в созвездии Геркулеса — примерный вид через телескоп диаметром 300 мм
Галактики. Эти звёздные острова можно найти не только в телескоп, но и в бинокль. Именно найти, а не рассмотреть. В телескоп же они выглядят как небольшие бесцветные пятнышки. Начиная с диаметра 90-100 мм, у ярких галактик можно заметить форму. Исключение — Туманность Андромеды, её форму можно легко рассмотреть даже в бинокль. Разумеется, ни о каких спиральных рукавах и не может быть и речи до диаметра 200-250 мм, и то они заметны лишь в немногих галактиках.
Галактики М81 и М82 в созвездии Большой Медведицы — примерный вид через бинокль 20х60 и телескопы диаметром от 80-90 мм.
Туманности. Представляют собой облака межзвездного газа и (или) пыли, подсвеченные другими звёздами или остатками звёзд. Как и галактики, в небольшой телескоп они видны в виде слабых пятнышек, однако в телескопы побольше (от 100-150 мм) можно заметить форму и структуру большинства ярких туманностей. Одну из ярчайших туманностей — М42 в созвездии Ориона — можно увидеть даже невооруженным глазом, а телескоп покажет сложную газовую структуру, похожую на клубы дыма. У некоторых компактных ярких туманностей можно рассмотреть цвет — например, туманность NGC 6210 “Черепаха», которую видно как маленький голубоватый диск.
Большая Туманность Ориона (М42)
Примерный вид в телескопы диаметром от 80мм.
Планетарная туманность М27 «Гантель» в созвездии Лисички.
Примерный вид в телескопы диаметром от 150…200мм.
Планетарная туманность М57 «Кольцо» в созвездии Лиры.
Примерный вид в телескоп диаметром 130…150мм.
Двойные звёзды. Наше Солнце — это одиночная звезда, однако много звезд во Вселенной представляют собой двойную, тройную или даже четверную систему часто звёзды оказываются разной массы, размера и цвета. Одна из красивейших двойных звёзд — Альбирео в созвездии Лебедя. Невооруженным глазом Альбирео выглядит как одиночная звезда, однако достаточно взглянуть в телескоп, и Вы увидите две яркие точки разного цвета — оранжевого и голубоватого. Кстати, все звёзды в телескоп видны как точки из-за огромного удаления. Все,
…кроме Солнца. Сразу предупреждаю — наблюдать Солнце без специальных средств защиты очень опасно! Только со специальным апертурным фильтром, который надежнейшим образом должен быть закреплен на передней части телескопа. Никаких тонировочных плёнок, закопченных стёкол и дискет! Берегите глаза! Если же все меры предосторожности соблюдены — даже в крохотный 50-60 мм телескоп вы сможете увидеть солнечные пятна — темные образования на диске солнца. Это места, из которых выходят магнитные линии. Наше Солнце вращается с периодом около 25 суток, поэтому наблюдая за солнечными пятнами каждый день, можно заметить вращение Солнца.
Солнце с пятнами при наблюдении через телескоп с апертурным солнечным фильтром
Кометы. Периодически на небе видны яркие «хвостатые гостьи», иногда доступные даже невооруженному глазу. В телескоп или бинокль они видны также, как и галактики с туманностями — небольшие бесцветные пятнышки. У больших ярких комет можно рассмотреть хвост и зеленоватый цвет.
Если после прочтения данной статьи у вас ещё осталось желание приобрести телескоп — тогда я Вас поздравляю, ибо впереди у ещё один важный шаг — правильный выбор телескопа, но об этом уже в следующей статье.
Если же Вы уже являетесь владельцем телескопа — рекомендую прочитать статью «У меня появился телескоп. Что дальше?»
Ясного неба!
Астрофотография в каждый дом
Думаю у любого человека, интересующегося космосом — возникала идея купить телескоп, чтобы лично все посмотреть.
Однако суровая реальность вечно портит всю малину: в пределах города – все небо засвечено уличным освещением и турбулентность воздуха высокая. Это означает, что либо придется ограничится самыми крупными и яркими объектами (вроде Луны и Юпитера), либо возить телескоп далеко за город.
Возможное решение проблемы — удаленно-управляемые телескопы большого размера и расположенные в горах. Конечно, возможность видеть все своими глазами это не заменит — но астрофотографии полученные таким образом будет трудно превзойти. Именно на этом способе я и хочу остановиться в этой статье.
Пример того, что получилось: галактика Андромеда, M31 на телескопе Т20
Когда у меня возникло желание купить телескоп — я решил вспомнить золотое правило: перед покупкой дорогой игрушки – всегда полезно её арендовать, быть может интерес удастся удовлетворить ценой намного меньшего гемора и затрат. Я поискал платные сервисы удаленного доступа к телескопам – и нашел iTelescope.net. Есть и бесплатные – но там очень большие очереди, а нам ведь подавай все здесь и сейчас :–)
У iTelescope – 19 телескопов с удаленным доступом, установленные на площадках в Австралии, Испании и США. Все они расположены вдали от городов, в горах. Самый маленький телескоп, куда пускают вообще бесплатно (T3) – диаметром 150мм, с учетом его расположения уже превосходит все, что можно увидеть в городских условиях. Более крутые телескопы – имеют диаметр зеркала до 70 сантиметров с огромными охлаждаемыми цифровыми матрицами и кучей светофильтров (ИК, RGB, узкополосные для исследований).
Цена вопроса – с бесплатным аккаунтом нам дают 40 «очков» и доступ к самому простому телескопу, и за 5$ (я платил картой mastercard yandex.денег) — еще +30 очков и доступ к «большим» телескопам. Время работы на самом большом доступном телескопе стоит 99 очков в час – считается только время экспонирования. Т.е. если вы снимаете галактику, и делаете 3 снимка по 10 минут (R+G+B) – то с вас спишут 50 очков. Снимки планет и других ярких объектов с короткой выдержкой – обойдутся в результате в 1 очко на любом телескопе (меньше 1 потратить нельзя). Таким образом за эти 5$ можно сделать пару хороших снимков галактик/туманностей из глубокого космоса и/или кучку фотографий планет. Покупка дополнительных очков обойдется гораздо дороже – порядка 1$ за 1 очко. Но начальных 70 для удовлетворения интереса вполне может хватить.
Особенности работы с «большими» телескопами:
На большинстве телескопов стоит огромная (по площади) охлаждаемая черно-белая матрица, и колесо со светофильтрами. Это позволяет использовать необычные фильтры (например узкополосные) или снимать черно-белое изображение чтобы собрать больше света. Потому цветные снимки приходится делать в несколько экспозиций. Можно делать 1 экспозицию яркости по-больше (Luminosity), и 3 по-меньше для цвета (RGB/RVB).
Нужно также обратить внимание на тип матрицы (указано в описании телескопа) — есть ABG (Anti-blooming gate) и NABG (not ABG). На NABG матрицах при длинных экспозициях яркие звезды будут увеличиваться в площади (в вертикальные линии), но они могут быть более полезными в научных целях (т.к. они более линейные). Также NABG матрицы имеют несколько бОльшую чувствительность. На мой взгляд, если мы преследуем эстетические цели и нужно максимальное качество картинки — лучше использовать телескопы с ABG матрицей.
Телескопы весьма неторопливы — на поворот и фокусировку может уйди до 5 минут на 1 снимок, так что снять МКС может быть затруднительно 🙂
Подробнее о том, как работать с телескопами:
После логина на сайте вы попадете в панель управления:
Там видно свободные и занятые телескопы. Кликнув на надпись «available» рядом с нужным телескопом – можно залогиниться в конкретный телескоп. Далее жмем на Run Image Series, в Target Name пишем название объекта который будем фотографировать (например Jupiter, m33, m31 и т.д.) и жмем Get Coordinates. Если объект в базе найдется – сразу будут координаты. В базе нет луны – чтобы её сфотографировать, понадобится знать её точные координаты на момент съемки. Узнать их можно в Stellarium (там нужные координаты в левом верхнем углу “RA/DE»). При желании можно посмотреть и текущий скриншот управляющего компьютера.
Затем идет список снимков, которые нужно сделать и их настройки:
Фильтры:
R,G,B | Цветные |
V | То же, что и G |
I | Инфракрасный |
Luminosity | Яркость (отрезан ИК и УФ) |
Clear | Прозрачный (возможно снижение четкости из-за усиления хроматических аберраций) |
Ha | H-alpha. Узкополсный фильтр линии возбужденного водорода. Используется чтобы более контрастно видеть детали в галактиках и туманностях. |
Oiii | Линия дважды ионизированного кислорода. Позволяет увидеть детали в диффузных и планетарных туманностях. |
Sii | Линия ионизированной серы. Позволяет увидеть детали в туманностях. |
Если достаточно черно–белого снимка – лучше снимать Luminosity или Clear – тогда будет использован максимум света. В противном случае – делать 3-4 снимка RGB или LRGB. Duration – время съемки в секундах. Для объектов глубокого космоса (галактик, туманностей и проч) – чем больше, тем лучше. Оптимальные результаты – 300–600 секунд.
Применение узкополосных фильтров требуют увеличения экспозиции в 10-15 раз.
Планеты – требуют очень коротких выдержек, в 0.1–0.01 секунды + можно использовать узкополосные фильтры (Ha, Sii, Oiii). С экономической точки зрения использовать маленькие телескопы (150–200мм) с большими выдержками невыгодно – проще протиснуться на большой телескоп (500мм) и за меньшее время сделать более яркую фотографию. Последнее – все эти телескопы в целом заточены под сбор максимального количества света, а не высокую угловую разрешающую способность. Нужно при сравнении телескопов обращать внимание на параметр «Resolution» — сколько угловых секунд в каждом пикселе, какой угловой размер кадра (FOV) – помещается ли туда то, что мы хотим сфотографировать, или наоборот, не слишком ли маленький получится объект.
При выборе объекта для съемки – смотрите на звездную величину. Если это галактика 15–й звездной величины – то даже самому крутому наземному телескопу придется тяжко. Я бы рекомендовал начать со каталога Мессье, выбирая там объекты 7–й звездной величины и ярче.
Если нужный телескоп на данный момент занят – там же в интерфейсе можно создать план съемки, и запланировать съемку в автоматическом режиме (не позднее, чем за 4 часа до назначенного времени).
Обработка фотографий
Результаты съемки – складываются на FTP (data.itelescope.net). По умолчанию фотографии сохраняются в формате FIT, с 16-и битной глубиной яркости. FIT — содержит не только само изображение, но и подробную информацию о параметрах съемки. Сохраняются 2 версии — напрямую данные с матрицы и Calibrated версия. Calibrated — уже прошла основные шаги обработки (вычитание темного кадра, коррекция разной чувствительности ячеек), обычно проще использовать её.
Далее изображения нужно будет конвертировать из формата FIT в TIFF с помощью программы FITS Liberator:
Затем — можно сразу в фотошоп, или склеить отдельные RGB кадры в единую цветную картинку (для этого нужен CCDStack или DeepSkyStacker). Ссылки на эти и другие полезные программы тут.
Совместить несколько снимков в CCDStack можно так: Открываем все картинки, Stack–>Register, двигаем настройки пока все кадры не совпадут. Потом Color–>Create, указываем в какая картинка является каким цветом — и готово :–)
При обработке яркости фотографий туманностей и галактик кривыми в редакторе — рекомендую попробовать что-то вроде графика справа (по каждому каналу отдельно).
Заключение и несколько получившихся снимков:
Надеюсь этот затянувшийся пост либо позволит вам удовлетворить ваш космо–интерес малой кровью, или понять, что вам действительно нужен свой телескоп :–)
Предлагаю делится своими лучшими получившимися астрофотографиями в комментариях, по возможности выкладывать архивы с оригинальными файлами — на случай если у кого-то удасться обработать лучше.
Галактика Треугольника, М33. 4 снимка LGB+Ha, 5+3+3+15 минут на T7.
Луна (0.1 сек с фильтром Ha на Т16 – 150мм):
Юпитер Телескоп Т7 – 430мм. Видны также спутники Юпитера и даже тень от Ио на планете.
Кстати, касательно других планет — я посмотрел графики расстояний до планет с целью получения наилучших фотографий, и кратчайшее расстояние от земли до планет получаются в следующее время:
Mars: closest 1st of April 2014. Особенно это важно для Марса — сейчас там ничего не разглядеть, разница расстояний в
4 раза.
Jupiter: 1st of January 2014
Saturn: 1st of July 2014 — Сейчас он в стороне солнца — и ночью его не застать.
Uranus: Now
Neptune: 1st of August 2014
Pluto: 1st of June/July 2014 (Разница расстояний — 5%, слишком уж он далеко)