Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Перпендикулярные прямые — основные свойства, признаки и правила построения

В геометрии распространено понятие прямых. Они обозначаются двумя большими латинскими буквами или одной маленькой. При построении линии могут пересекаться и иметь только одну общую точку. Взаимно перпендикулярные прямые находятся относительно друг друга под углом 90°. Построение проводится при применении специальных инструментов.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Основные свойства

При рассмотрении того, какие прямые называют перпендикулярными, нужно уделить внимание свойствам. Они выглядят следующим образом:

Для обозначения перпендикуляра применяется знак «⊥». В подобном случае угол составляет 90°. На чертеже пересечение обозначается своеобразным квадратом, которые рисуется от двух пересекающихся линий.

Доказательство взаимного расположения

Рассматриваемый термин получил широкое распространение, он фигурирует практически в каждой геометрической задаче. В некоторых случаях о взаимном расположении известно, в других это нужно доказать. Задача доказательства заключается в определении прямого угла между двумя прямыми или плоскостями. Необходимое и достаточное условие перпендикулярности заключается в теореме:

Для определения расположения плоскостей или отрезков относительно друг друга следует провести геометрическое построение. Проходить отрезки должны в одной точке.

Определение перпендикулярности прямой и плоскости

Рассматривая определение перпендикулярных прямых следует учитывать, что подобное свойство применимо к плоскости. Основной признак заключается в перпендикулярности отрезка к любому другому, который находится в плоскости. Перпендикулярность прямых в пространстве указывается определенным знаком.

Доказать перпендикулярность можно проведя геометрические построения. Признаки расположения плоскости и прямой под углом 90° заключаются в следующем:

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Отрезки могут быть также параллельными. В этом случае нет точки, в которой будут они пересекаться.

Построение перпендикуляра

Выдержать угловой коэффициент можно различным образом. В большинстве случаев для этого нужно иметь при себе циркуль. Построить перпендикуляр можно следующим образом:

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Существенно упростить задачу можно путем применения специального чертежного инструмента, к примеру, любого прямоугольного треугольника. Он может называться угольником, основной его признак заключается в наличии двух перпендикулярных плоскостей. Построение проводится следующим образом:

В геометрии чаще всего применяется именно второй способ. Однако первый урок позволяет начертить два взаимно перпендикулярных отрезка с высокой точностью. Недостаток применения циркуля заключается в наличии вспомогательных линий, которые стереть сложно. Написать о взаимном расположении линий можно в описательной записке.

Трехмерное пространство

В начертательной геометрии линии всегда находятся в двухмерном пространстве. В специальных программах можно начертить отрезки в трехмерном пространстве. Подобное взаимное расположение может выглядеть следующим образом:

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

В жизни подобное расположение прямых встречается крайне часто. Проверить угол можно при применении специальных инструментов.

Четырехмерная система координат и лемма

Некоторые программы работают с четырехмерным пространством. Взаимное расположение плоскостей под прямым углом в этом случае имеет два смысла: они могут быть перпендикулярны в трехмерном смысле при образовании двугранного угла 90°.

Рассматриваться взаимное расположение плоскостей может и в 4-мерном смысле. Условия выглядят следующим образом:

Условия четырехмерного пространства определяют то, что через одну точку можно провести 6 взаимно перпендикулярных плоскостей. Определять их взаимное расположение можно несколькими различными способами.

Лемма, касающаяся перпендикулярности, связана с определением параллельности. Если одна из параллельных линий расположена под прямым углом относительно плоскости или отрезка, то вторая также перпендикулярна. Ответ на многие задачи связан с доказательством леммы:

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

При соблюдении условий полученный угол будет являться прямым. С учетом проведенных построений можно сформулировать определение перпендикулярности параллельных отрезков.

Применение термина

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Как ранее было отмечено, встречается большое количество примеров применения рассматриваемого термина. На основе теоремы и доказательства были созданы различные формулы, позволяющие определить протяженность одного из сторон геометрической фигуры.

В средних и старших классах встречается большое количество задач, связанных с определением угла и протяженности сторон построенной фигуры. В некоторых случаях проводится построение диагонали, которая делит 90° на две равные части.

В жизни взаимное перпендикулярное расположение плоскостей встречается крайне часто. Примером служат несущие элементы различных сооружений. Подобное расположение позволяет правильно распределить оказываемую нагрузку. Править наклон можно путем применения специальных измерительных инструментов.

Многие геометрические фигуры построены на основе перпендикулярного расположения отрезков. Наиболее распространен параллелограмм или квадрат, треугольник. За счет выдерживания правильного угла обеспечивается также взаимное параллельное расположение сторон.

Приведенная выше информация указывает на то, что определение угла, под которым расположены плоскости, проводится в самых различных сферах. Инженеры и строители должны с высокой точностью контролировать этот показатель.

Источник

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Углы бывают острые, прямые и тупые.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Угол с градусной мерой 90° называется прямым. Если угол меньше 90°, его называют острым, а если больше 90° — тупым. Угол, равный 180° (то есть образующий прямую линию), называют развёрнутым.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Два угла с одной общей стороной называются смежными.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

На рисунке луч ОС делит развёрнутый AOB =180° на две части, образуя тупой 1 и острый 2.

Поэтому если один из смежных углов прямой, то второй также оказывается прямым: 180° – 90° = 90°

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

При пересечении двух прямых образуются четыре угла:

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Обе стороны 1 также являются сторонами 3, а стороны 2 продолжают стороны 4. Такие углы называют вертикальными.

∡1 и ∡2 — смежные, как и ∡1 и ∡4. Следовательно:
∡1 + ∡2 = 180°
∡1 + ∡4 = 180°
∡2 = ∡4

То же справедливо и для ∡1 и ∡3.

Прямые, пересекающиеся под прямым углом, называются перпендикулярными.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

1 равен 90°, остальные углы оказываются для него либо смежными, либо вертикальными, а значит, тоже равными 90°.

Перпендикулярность прямых принято обозначать так: a⟂b

Изучайте математику вместе с преподавателями домашней онлайн-школы «Фоксфорда»! По промокоду GEOM72021 вы получите неделю бесплатного доступа к курсу геометрии 7 класса, в котором изучаются перпендикулярные прямые!

Теорема о перпендикулярных прямых

Через каждую точку прямой можно провести перпендикулярную ей прямую, притом только одну.

Построим доказательство теоремы о перпендикулярных прямых «от противного», то есть для начала предположим, что утверждение неверно.

Возьмём прямую a, отметим на ней точки О и B. От луча OB отложим ∡BOA = 90°. Таким образом, отрезок OA будет находиться на прямой, перпендикулярной а.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Теперь предположим, что в той же полуплоскости существует другой перпендикуляр к а, проходящий через О. Назовём его OK. ∡BOK и ∡BOA, равны 90° и лежат в одной полуплоскости относительно луча OB. Но от луча OB в данной полуплоскости можно отложить только один прямой угол. Поэтому другой прямой, проходящей через О и перпендикулярной a, не существует. Теорема доказана.

Свойство перпендикулярных прямых

Две прямые, перпендикулярные третьей, не пересекаются.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Пусть a⟂b и a⟂c. b и с не пересекаются, ведь если бы существовала точка их пересечения, значит, через неё проходили бы две прямые, перпендикулярные a, что невозможно согласно теореме о перпендикулярных прямых. Следовательно, b||с.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямойЧто можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямойПопробовать бесплатно

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Интересное по рубрике

Найдите необходимую статью по тегам

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Подпишитесь на нашу рассылку

Мы в инстаграм

Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямойПосмотреть

Рекомендуем прочитать

Реальный опыт семейного обучения

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Звонок по России бесплатный

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Что можно сказать о взаимном расположении двух прямых которые перпендикулярны третьей прямой

Посмотреть на карте

Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *