Что изучает наука микробиология и каково ее значение в системе медицинских дисциплин

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ И ЕЕ ЗНАЧЕНИЕ В ДЕЯТЕЛЬНОСТИ ВРАЧА

ЛЕКЦИИ ДЛЯ СТУДЕНТОВ ЛЕЧЕБНОГО ФАКУЛЬТЕТА (ВЕСЕННИЙ СЕМЕСТР)

Лекция №1

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ И ЕЕ ЗНАЧЕНИЕ В ДЕЯТЕЛЬНОСТИ ВРАЧА

МЕТОДЫ ИССЛЕДОВАНИЯ В МИКРОБИОЛОГИИ

— слабая морфологическая дифференцировка (относительно простое строение);

— быстрый рост и размножение (в благоприятных условиях одна особь за сутки

может дать потомство в сотни миллионов особей);

— высокая активность обменных процессов (быстрый синтез и разложение веществ,

— повсеместное распространение (связано с выраженной способностью к адаптации).

Задачи медицинской микробиологии:

1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма

3. Разработка методов микробиологической диагностики (распознавания), специфического лечения и профилактики (предупреждения) инфекционных болезней человека.

Микробиологические исследования проводятся в специальных научных или практических лабораториях, где поддерживается противоэпидемический режим. Соблюдение особых правил работы в лаборатории преследует 2 цели: а) исключить возможность внутри-лабораторного заражения и выноса инфекции за пределы лаборатории; б) предотвратить микробное загрязнение воздуха, оборудования и материалов, снижающее качество анализа.

Лекция №2

МОРФОЛОГИЯ И ФИЗИОЛОГИЯ БАКТЕРИЙ,

ГРИБОВ, ПРОСТЕЙШИХ.

Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп тлеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть отраженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнопольную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате «раздавленная капля».

Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличии от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изображения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении коротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с «сухой» или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цветное изображение, обнаружить малое количество микробов, изучить их структуру и химический состав, использовать метод иммунофлюоресценции.

Электронный микроскоп

Лекция №3

Лекция №4

ГЕНЕТИКА БАКТЕРИЙ

Микробы, как объекты генетических исследований, обладают рядом преимуществ: бактерии содержат гаплоидный набор генов, поэтому изменения их генотипа с неизбежностью влекут за собой изменение фенотипа; для них характерно быстрое размножение и огромная численность потомства (быстрая смена поколений); работа с микробами не требует больших затрат.

Лекция №5

ИНФЕКЦИЯ

СЕПСИС

Различают несколько форм взаимодействия /симбиоза/ двух биологических видов, в том числе паразитизм, когда один живёт за счет другого, нанося ему вред / +- /. Паразит, как правило, зависит от хозяина. Частным случаем паразитизма является инфекция.

Лекция №6

ИММУННОЛОГИЯ

ВИДЫ ИММУНИТЕТА

Виды и Формы иммунитета.

Различают, иммунитет тканевой /обусловливает несовместимость тканей/ и антиинфекционный / противомикробный и противопаразитарный /.

Антиинфекционный иммунитет включает: естественную резистентность / неспецифическая защита / и приобретённый иммунитет / специфическая защита /.

Естественная резистентность представлена:

а/ видовой невосприимчивостью /невосприимчивость к микробам, патогенным для других видов/,

б/ невосприимчивостью при генетических отклонениях от нормы /например,

люди с серповидной формой эритроцитов не болеют малярией/,

в/ собственно естественной резистентностью.

Приобретенный иммунитет имеет следующие формы:

I/ активный /в его создании принимает участие собственная иммунная система/, в том числе:

а/ постинфекционный /после перенесённого заболевания/

б/ поствакцинальный /после введения вакцинного препарата/,

2/ пассивный /когда в организм вводятся готовые специфические антитела

или иммуноциты/, в том числе:

а/ плацентарный /передаваемые от матери через плаценту плоду антитела/

б/ постсывороточный /после введения иммунной сыворотки/.

Признаки естественной резистентности:

1. Наследуется, являясь видовым признаком.

2. Отличается относительной стойкостью в течение жизни.

3. Формирование не связано с поступлением антигена /чужеродных агентов/

4. Механизм защиты однотипен вне зависимости от вида возбудителя /неспецифичность защиты/

Признаки приобретённого иммунитета:

1. Приобретается в течение жизни индивидуума /не наследуется/.

2. Нестоек во времени.

3. Строго специфичен /направлен против того возбудителя или яда, к которому иммунизирован индивидуум/.

Лекция №7

АНТИГЕНЫ АНТИТЕЛА

Специфические механизмы защиты /приобретенный иммунитет, иммунный ответ/ предполагают распознавание клетками иммунной системы генетически чужеродных субстанций /антигенов/ и специфическое реагирование на них, которое может проявляться в виде нескольких реакций :

— образование антител /иммуноглобулинов/

— иммунологическая толерантность /специфическая безответность/

— гиперчувствительность немедленного типа /аллергия/

— гиперчувствительность замедленного типа /аллергия/

— идиотип-антиидиотипическое взаимодействие. Эти реакции и в целом иммунный ответ являются функцией иммунной системы.

Различают гуморальный иммунный ответ /выработка антител, формирование аллергии немедленного типа/ и клеточный иммунный ответ, связанный с накоплением сенсибилизированных Т-лимфоцитов /гиперчувствительность замедленного типа и др./.

Иммунный ответ контролируют гены I-области 6-й пары хромосом человека. Пусковым механизмом для любой иммунологической реакции является контакт иммунной системы с антигеном.

Антигенаминазывают вещества, которые несут признаки генетической чужеродности и при введении в организм вызывают развитие иммунологических реакций. Если вещество вызывает развитие аллергии, его называют аллергеном. Условия, при которых вещество может быть антигеном:

I/ чужеродность /по отношению к иммунной системе конкретного организма/

2/ достаточно большая молекулярная масса /более 10 килодальтон/

3/ достаточно сложная структура

4/ жесткое расположение детерминантных групп в молекуле

5/ хорошая растворимость во внутренней среде организма.

По специфичности различают следующие типы антигенов:

I/ видовой антиген, определяется у всех представителей данного вида и отсутствует у представителей других видов /у микробов, животных, человека его можно выявить в реакции с видоспецифическими иммунными

3/ гетерогенный антиген, является общим для представителей разных видов; так, у возбудителя чумы и других микробов есть общие антигены с тканями человека /антигенная мимкрия/; общие антигены могут быть у представителей разных видов микробов, входящих в одно семейство, или весьма отделённых /групповые антигены/,

из которого они получены. Нормальными аутоантигенами являются ткани

организма, которые в норме не соприкасаются с иммунной системой

/мозг, хрусталик глаза, семенники/; они в случае травмы могут иммунизировать организм. Патологическими аутоантигенами могут быть патологически измененные ткани после обморожения, ожога, облучения, действия микробных токсинов.

Микробные антигены. К ним относят: целые микробные клетки /убитые и живые/, токсины, продукты распада клеток, извлекаемые из клеток фракции. В антигенной структуре микробной клетки различают: Н-антиген /белковый антиген жгутиков/, К-антиген /поверхностный белковый или полисахаридный антиген оболочки/, О-антиген /липополисахарид клеточной стенки, соматический антиген/, цитоплазматические антигены. Протективным антигеном микроба называют антиген с наибольшей антигенностью и иммуногенностью, который при введении способствует формированию стойкого иммунитета. Поэтому протективные антигены вводят в состав вакцин. Цели изучения микробных антигенов:

— определение вида и варианта /идентификация/ возбудителя по антигенной структуре,

— быстрая индикация /обнаружение/ микробов в исследуемом материале иммунологическими методами /при помощи иммуноглобулиновых препаратов

— создание вакцин и сывороток для профилактики и лечения инфекций.

Антитела— это белки животного происхождения, образуемые лимфоидными органами позвоночных при внедрении антигенов и способные вступать с ними в специфическое взаимодействие. Они отличаются особым строением и свойствами, входят в состав гамма-глобулиновой фракции сыворотки крови и поэтому их называют иммуноглобулинами.

Физико-химические свойства; а/ относительная термостабильность, б/ относительная устойчивость к действию протеаз, в/ устойчивость к денатурации этанолом при 0-4°С, г/ осаждаются без денатурации нейтральными солями /сульфатом аммония и др./. Эти свойства используются при получении иммуноглобулиновых препаратов.

IgG двухвалентны – имеют 2 активных центра, IgM пятивалентны – имеют 5 активных центров/ пентамер /.

Краткая характеристика классов иммуноглобулинов.

в/ более высокие значения максимальных титров /в 3 и более раз/

Реакции иммунитета

Реакциями иммунитета /серологическими реакциями/ называют действие между антигенами и антителами, ведущее к образованию иммунного комплекса /антиген-антитело/. Они протекают, как правило, в 2 фазы в присутствии дополнительного фактора /электролит, комплемент, фагоцит или др./Специфическая фаза /невидимая: «химическая»/ происходит очень быстро и характеризуется соединением детерминантной группы антигена с активным центром антитела. В результате образуется комплекс, утрачивающий растворимость в изотонических растворах /например, в растворе хлорида натрия, ИХН/. Неспецифическая фаза /видимая, «коллоидная»/ наступает через несколько минут или часов и характеризуется укрупнением комплекса антиген+антитело с изменением его физических свойств. Эта фаза сопровождается видимыми феноменами: выпадением осадка, образованием хлопьев, просветлением взвеси, остановкой движения частиц и др.

Реакции иммунитета высокоспецифичны и их широко применяют на практике

для серодиагностики инфекций /по обнаружению антимикробных антител в сыворотке крови/, определения вида и варианта микроба по антигенной структуре, определения других антигенов / аллергенов, гормонов, биологических образцов разного происхождения /. Области применения peaкций иммунитета: диагностика инфекционных и неинфекционных заболеваний, фармация, санитарно-ветеринарная служба, трансплантация органов и тканей /в т.ч. крови/, судебная медицина.

В методе иммуноэлектрофореза раствор неоднородного антигена сначала подвергают фракционированию в агаровом геле под действием постоянного тока а затем канавку в геле, сделанную сбоку от линии распределения фракций заполняют сывороткой /антителами/. В результате двойной диффузии в геле образуется специфический рисунок из дуг к линий преципитата, вид которого зависит от количества и качества фракций антигена и антител.

РП обладает высокой чувствительностью, она позволяет выявлять белковые антигены в разведениях 1:100000 и выше, т.е. недоступных для обнаружения химическим путём. Титром преципитирующей сыворотки считают наибольшее разведение антигена, дающее преципитацию при контакте с ней. Такая особенность связана с мелкодисперсным состоянием антигена, малыми размерами его молекул. РП применяют для индикации микробных антигенов в материале от больных и из внешней среды, определения иммуноглобулинов разных классов /диагностика и профилактика инфекций и иммунодефицитов/ для выявления фальсификации пищевых продуктов /санитарная практика/, для определения видовой принадлежности крови и других биологических примесей /судебно-медицинская практика/.

Иммуноферментный анализ /ИФА/. Основан на использовании антител, меченных ферментом, который проявляет в присутствии субстрата специфическую активность в случае образования комплекса антиген+антитело, фиксированного на твёрдой основе. ИША широко используют для определения разнообразных антигенов и антител. Разработано много методов и модификаций ИФА, выпускаются коммерческие наборы. Для определения антигена в исследуемом материале /сэндвич-метод/ вначале производят сорбцию известных антител на поверхности лунок полистироловой пластины, затем вносят антигенсодержащий материал, и, после контакта, тщательно промывают. Затем в лунки добавляют соответствующие антитела /сыворотку/, меченные пероксидазой хрена или другим ферментом, отмывают и добавляют хромогенный субстрат / 5-аминосалициловую кислоту с перекисью водорода или др./

При положительной реакции в течение I часа развивается коричневое окрашивание, интенсивность которого зависит от количества меченных антител, связанных в иммунном комплексе. Для определения неизвестных антител /например, с целью серодиагностики сифилиса или ВИЧ-инфекции/ на поверхности лунок сорбируют известный антиген, затем добавляют исследуемую сыворотку крови, промывают, вносят сыворотку с антителами против иммуноглобулинов человека, меченную ферментом, и, после вторичной промывки, добавляет хромогенный субстрат. Учитывают так же ИФА отличается высокой чувствительностью и специфичностью. /

* Непрямой метод ИФ отличается тем, что на стекло наносят обычные кроличьи антитела, которые образуют с клетками невидимый комплекс АГ+АТ. Затем препарат промывают и обрабатывают люминесцирующей: сывороткой с ослиными /лошадиными/ AT к кроличьему белку /образуется двойной светящийся комплекс/. Этот метод более экономичен, т.к. используется одна люминесцирующая и набор нелюминесцирующих сывороток.

ХАРАКТЕРИСТИКА НЕКОТОРЫХ РЕАКЦИЙ ИММУНИТЕТА /РИ/

Источник

Микробиология

Разделы микробиологии: бактериология, микология, вирусология и т. д. В зависимости от экологических особенностей микроорганизмов, условий их обитания, сложившихся отношений с окружающей средой, и в зависимости от практических потребностей человека наука о микробах в своем развитии дифференцировалась на такие специальные дисциплины как общая микробиология, медицинская, промышленная (или техническая), космическая, геологическая, сельскохозяйственная и ветеринарная микробиология.

Содержание

История науки

За несколько тысяч лет до возникновения микробиологии как науки человек не зная о существовании микроорганизмов, широко применял природные процессы, связанные с брожением, для приготовления кумыса и других кисломолочных продуктов, получения алкоголя, уксуса, при мочке льна.

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо (1478—1553), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха. Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Что изучает наука микробиология и каково ее значение в системе медицинских дисциплин

Что изучает наука микробиология и каково ее значение в системе медицинских дисциплин

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем. В 1665 Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии. По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер (1601—1680), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука.

В своём письме Лондонскому Королевскому обществу он сообщает как 24 апреля 1676 года микроскопировал каплю воды и даёт описание увиденных там существ, в том числе бактерий. Левенгук считал обнаруженных им микроскопических существ «очень маленькими животными» и приписывал им те же особенности строения и поведения, что и обычным животным. Повсеместное распространение этих «животных» стало сенсацией не только в научном мире. Левенгук демонстрировал свои опыты всем желающим, в 1698 году его даже посетил Пётр I.

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике. Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт, не имея никакого понятия о фотосинтезе, заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в 1766—1776 годах. Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В России одним из первых микробиологов был Л. С. Ценковский (1822—1887), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы.

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович (1744—1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы — возможности оптики тогда ещё не позволяли это сделать. В 1827 итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер, Йёнс Якоб Берцелиус и Юстус Либих. Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» (1839) — саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Средние века были временем господства идей Аристотеля, что означало также и признание его теорий зарождения двоякодышащих рыб из ила, насекомых из экскрементов или капель росы на листьях. Первые эксперименты, опровергающие представления Аристотеля поставил тосканский придворный медик Франческо Реди (1626—1697). Общий его принцип — наблюдение за питательным веществом в открытом, куда возможно попадание живых организмов, и в каким-либо образом закрытом от них, но не от воздуха, сосуде — использовался во всех подобных опытах. Тогда было опровергнуто самозарождение насекомых, но уже в XVIII веке католический священник Джон Турбервилл Нидхем выдвинул гипотезу «жизненной силы», существующей в живых телах и вызывающей при их распаде возникновение микроорганизмов. Против него выступил Ладзаро Спалланцани, показав что нагревание препятствует появлению живых существ в настое растительных и животных волокон, закрытом в сосуде. Тогда Нидхем возразил что воздух, в котором имеют потребность живые существа, теряет свою «жизненную силу» при нагревании.

Что изучает наука микробиология и каково ее значение в системе медицинских дисциплин

Что изучает наука микробиология и каково ее значение в системе медицинских дисциплин

Франц Шульц после стерилизации сосуда с настоем пускал туда воздух, пропущенный через карболовую кислоту, и не наблюдал развития там микроорганизмов. Чтобы избежать возражений, что кислота тоже лишает воздух жизненной силы, Шрёдер и фон Душ в 1854 году пропускали воздух через хлопковый фильтр, а в 1860 Гофман и независимо от него в 1861 Шевре и Пастер показали, что нет необходимости и в фильтре — достаточно изогнуть соединяющие сосуд с атмосферой трубки, чтобы в нём после стерилизации не «зарождалась» жизнь. Так принцип omne vivum ex vivo (всё живое из живого) окончательно победил в биологии. Используя представления о невозможности самозарождения жизни, Луи Пастер в 1860-х показал что стерилизация делает брожение невозможным, таким образом было доказано участие в нём микроорганизмов. Кроме того, это стало открытием новой формы жизни — анаэробной, не требующей кислорода, а иногда даже гибнущей под его воздействием.

Золотой век микробиологии

1880-е и 1890-е ознаменовались для микробиологии всплеском числа открытий. Во многом это было связано с подробной разработкой методологии. Прежде всего здесь следует отметить вклад Роберта Коха, создавшем в конце 1870-х — начале 1880-х ряд новых методов и общих принципов ведения исследовательской работы. Пастер использовал для выращивания микроорганизмов жидкие среды, содержащие все элементы, находимые в живых организмах. Жидкие среды, однако, были недостаточно удобны. Так, сложно было выделить колонию, происходящую от одной живой клетки («чистая культура»), в связи с чем можно было изучать только обогащённые самой природой культуры. Лишь в 1883 Э. Христианом Гансеном была получена первая чистая культура дрожжей, полученная методом висячей капли. Твёрдые среды впервые использовались для изучения грибов, где необходимость чистых культур также была обоснована. Для бактерий твёрдые среды применял Кон во Вроцлаве зимой 1868/69 годов, однако только в 1881 Роберт Кох положил начало широкому применению желатиновых и агаровых пластинок. В 1887 году введены в практику чашки Петри. Коху принадлежат также знаменитые постулаты:

Эти принципы были приняты не только в медицине, но и в экологии для определения вызывающих те или иные процессы организмов. Также Кох ввёл в применение методы окраски бактерий (ранее использованные в ботанике) и микрофотографию. Публикации Коха содержали в себе методики, принятые микробиологами всего мира. Вслед за ним началось развитие и обогащение методологии, так в 1884 Ганс Христиан Грам использовал метод дифференцирующего окрашивания бактерий (Метод Грама), С. Н. Виноградский в 1891 применил первую элективную среду. За следующие годы было описано больше видов чем за все предыдущее время, выделены возбудители опаснейших заболеваний, обнаружены новые процессы, производимые бактериями и неизвестные в других царствах природы.

Инфекционные заболевания

В изучении жизнедеятельности микроорганизмов следует отметить вклад Луи Пастера (1822—1895). Он же вместе с Робертом Кохом (1843—1910) стоят в истоках учения о микроорганизмах как возбудителях заболеваний.

Экология микроорганизмов

Экологическую роль и многообразие микробиологических процессов показали Бейеринк (1851—1931) и С. Н. Виноградский (1856—1953).

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников (1845—1916), Д. И. Ивановский (1863—1920), Н. Ф. Гамалея (1859—1949), Л. С. Ценковский, С. Н. Виноградский, В. Л. Омелянский, Д. К. Заболотный (1866—1929), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва, А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

Цель медицинской микробиологии — глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *