Что изучает квантовая химия

Квантовая химия

Что изучает квантовая химия

Содержание

Общие сведения

Основной задачей квантовой химии является решение уравнения Шредингера и его релятивистского варианта (уравнение Дирака) для атомов и молекул. Уравнение Шредингера решается аналитически, учитывая следующие ограничения: жёсткий ротатор, гармонический осциллятор, одноэлектронная система. Но реальные многоатомные системы содержат большое количество взаимодействующих электронов, а для таких систем не существует аналитического решения этих уравнений, и, по всей видимости, оно не будет найдено и в дальнейшем. По этой причине в квантовой химии приходится строить различные приближённые, обычно численные или получисленные решения. Из-за быстрого роста сложности поиска решений с ростом сложности системы и требований к точности расчёта, возможности квантовохимических расчётов сильно ограничиваются текущим развитием вычислительной техники, хотя, наблюдаемые в последние два десятилетия революционные сдвиги в развитии компьютерной техники, приведшие к её заметному удешевлению, заметно стимулируют развитие прикладной квантовой химии. Решение уравнения Шредингера строится на уравнении Хартри-Фока-Рутана итерационным методом (SCF-self consistent field — самосогласованное поле) и состоит в нахождении вида волновой функции. Приближения, используемые в квантовой химии:

1. Приближение Борна — Оппенгеймера (адиабатическое): движение электронов и движение ядер разделено (ядра движутся настолько медленно, что при расчёте движения электронов ядра можно принять за неподвижные объекты). В связи с этим приближением существует так называемый эффект Яна-Теллера. Данное приближение позволяет представить волновую функцию системы как произведение волновой функции ядер и волновой функции электронов.
2. Одноэлектронное приближение (или приближение Хартри): считается, что движение электрона не зависит от движения других электронов системы. В связи с этим в уравнения, используемые в квантовой химии вносятся поправки на взаимное отталкивание электронов. Это позволяет волновую функцию электронов представить в виде суммы волновых функций отдельных электронов.
3. Приближение МО ЛКАО (Молекулярная Орбиталь как Линейная Комбинация Атомных Орбиталей): в данном подходе волновая функция молекулы представляется как сумма атомных орбиталей с коэффициентами: Ψ(r)=c1ψ1+ c2ψ2+…+cnψn, где
Ψ(r) — волновая функция (а точнее — её электронная часть),
c1 — коэффициент при атомной орбитали,
ψ1 — волновая функция атомной орбитали (получается при решении уравнения Шредингера для атома водорода — известно в точном виде). Решение задачи состоит в нахождении коэффициентов С. При учёте всех интегралов — так называемый метод Ab initio — количество вычислений растёт пропорционально количеству электронов в 6-8 степени, при полуэмпирических методах — в 4-5 степени.

Получаемая при решении уравнения волновая функция является математической абстракцией. Имеет определённый физический смысл лишь квадрат её значения, который по мнению Э.Шрёдингера, характеризует вероятность распределения (плотность) отрицательно заряженного электронного облака.

Однако большинство физиков не разделяло убеждений Э.Шрёдингера, так как доказательств существования электрона как отрицательно заряженного облака не существовало на тот момент. Общепринятой точка зрения стала лишь благодаря работам Макса Борна, который обосновал вероятностную трактовку квадрата волновой функции. За фундаментальное исследование в области квантовой механики, особенно за статистическую (вероятностную) интерпретацию волновой функции, М.Борну была присуждена в 1954 году Нобелевская премия по физике.

Строение атома

Источник

Квантовая химия

Про квантовую физику многие слышали благодаря научно-фантастическим книгам и фильмам. Но квантовая теория не оставила без внимания и другую классическую отрасль знания — химию. Чтобы разобраться в этой области, мы поговорили с доктором физико-математических наук, руководителем департамента химии МФТИ Александром Митиным.

Что изучает квантовая химияC 70-х годов прошлого века теоретическая химия стала очень бурно развиваться. В том числе и одна из ее составляющих — квантовая химия. Связано это с тем, что атомы и молекулы являются квантовыми объектами, а наука, которая их описывает, — квантовая механика. Отсюда вытекает, что на основе уравнений квантовой механики можно получать информацию о свойствах конкретных атомных и молекулярных систем. А зная уравнения для молекул, которые вступают в те или иные взаимодействия, — изучать механизм химических реакций.

Поскольку уравнения квантовой механики, как правило, не допускают аналитических решений, все современные знания основаны на численных методах решения. При таких подходах размерность системы, к которой сводятся исходные уравнения, может достигать нескольких миллионов.

Что изучает квантовая химия«Вычислительная сложность этих уравнений такова, что для получения качественного решения, то есть хорошей информации о молекулах, необходимо использовать мощные вычислительные ресурсы. Поэтому современные программы стали очень большими — они насчитывают больше полумиллиона строк исходного кода. Экстремальные расчеты молекулярных систем часто проводятся на многопроцессорных кластерах. Поэтому, нужно развивать как теорию, так и методы реализации», — рассказывает Александр Митин.

Квантовая химия является синтетической наукой на стыке химии, физики и математики: объекты исследования — химические, методы их исследования — физические, а алгоритмы этих методов — математические. Объектами изучения квантовой химии являются не только атомы и молекулы, но и наноструктуры. Последние вместе с пленками не являются твердыми телами, их правильнее относить к молекулярным системам.

Примером молекулы такого размера может быть инсулин. Это вещество очень важно для здоровья людей. Поэтому необходимо понимать, как происходят взаимодействия этой молекулы с организмом человека. По словам Александра Митина, ученые начинают понимать механизмы тех реакций, в которых она участвует. Это демонстрирует потенциальные возможности современной квантовой химии.

«Когда я только начинал свою научную карьеру, даже 3–4 атома были сложными молекулами. Сейчас системы с 1,5 тысячи атомов уже становятся доступными для расчетов. И я понимаю, какие алгоритмы надо использовать, чтобы можно было рассчитывать молекулы из 5 и более тысяч атомов. Это уже размер небольших белковых структур», — продолжает Александр Васильевич.

Проводя такие расчеты, можно лучше понять исследуемые процессы, что дополняет экспериментальные работы. Ведь очень часто экспериментально далеко не все можно определить. И возможность предварительно рассчитать объект изучения дает более глубокое понимание его сущности.

Первым делом моделируй

Сегодня в мире ежегодно синтезируется несколько сотен тысяч абсолютно новых веществ. Описываются их физико-химические свойства. Но по большей части полученные вещества не находят применения. Как же происходит поиск новых веществ? Синтез вещества является ключевой, но сложной и очень дорогой фазой этого процесса. Поэтому сначала идут квантовые расчеты возможных кандидатов для конкретного применения. Затем отбираются наиболее подходящие исходя из рассчитанных свойств кандидаты. И только потом они синтезируются. Тем самым ускоряется процесс поиска новых веществ.

Важны такие расчеты и для описания химических реакций, то есть для понимания их кинетики. В случае больших молекул знание электронной структуры позволяет определить их активные центры.

«Сейчас у меня в работе молекула инсулина, которая интересна и важна как для биологов, так и для химиков. Я хочу определить ее активные центры, то есть понять, какими частями она может присоединяться к другим молекулам, — говорит Александр Митин. — Понятно, что какая-то маленькая молекула может присоединиться к ней не в любом месте, а, согласно квантовой механике, только к последним заполненным электронами уровням энергий. А соответствующая молекулярная орбиталь не обволакивает всю молекулу, она локализована в каких-то ее частях. Те области, где она будет располагаться, и будут являться активными центрами. Определив их, мы можем понять, как инсулин будет взаимодействовать с другими молекулами».

Среди направлений развития теоретических химических методов можно выделить изучение трансурановых элементов. Эксперименты с трансурановыми химическими соединениями делать крайне сложно. Квантовые расчеты проводить заметно проще. Они дают информацию о соединениях и возможных химических реакциях с участием этих элементов. По словам Александра Митина еще до того, как синтезировали 117-й элемент таблицы Менделеева, он с коллегами смог рассчитать физико-химические свойства этого атома и его двухатомной молекулы. Экспериментально определить их не представляется возможным, поскольку ядра столь массивных элементов являются короткоживущими. Но располагать элементы в таблице нужно, а для этого необходимо знать их свойства.

«Новые теоретические построения и модели дают новый взгляд на физические объекты. Они позволяют ставить новые эксперименты, поскольку исследуемый объект всегда видится через призму модели. Квантово-механические расчеты часто позволяют уточнять эти модели и оценивать свойства исследуемых объектов до начала эксперимента. В этом их сила. Например, можно заранее оценить физико-химические свойства молекулы, которую планируется исследовать или синтезировать», — считает Александр Митин.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Квантовая химия

Полезное

Смотреть что такое «Квантовая химия» в других словарях:

КВАНТОВАЯ ХИМИЯ — область теор. химии, в к рой идеи и методы квант. механики применяются к исследованию атомов, молекул и др. хим. объектов и процессов. Квантовомеханич. подход в химии чаще всего основывается на Шредингера уравнении для атома, молекулы или… … Физическая энциклопедия

КВАНТОВАЯ ХИМИЯ — раздел теоретической химии, в котором строение и свойства химических соединений, реакционная способность, кинетика и механизм химических реакций рассматриваются на основе представлений квантовой механики. Сложность исследуемых объектов и… … Большой Энциклопедический словарь

КВАНТОВАЯ ХИМИЯ — область теоретической химии, изучающая строение и физ. хим. свойств молекул (ионов, радикалов, комплексов), природу хим. связей, валентности, электронную структуру молекул, их электрические и магнитные свойства на основе представлений и методов… … Большая политехническая энциклопедия

Квантовая химия — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Квантовая химия это направл … Википедия

КВАНТОВАЯ ХИМИЯ — раздел теоретич. химии, в к ром строение и св ва хим. соединений, их взаимод. и превращения в хим. р циях рассматриваются на основе представлений и с помощью методов квантовой механики. К. х. тесно связана с экспериментально установленными… … Химическая энциклопедия

квантовая химия — раздел теоретической химии, в котором строение и свойства химических соединений, реакционная способность, кинетика и механизм химических реакций рассматриваются на основе представлений квантовой механики. Сложность исследуемых объектов и… … Энциклопедический словарь

квантовая химия — kvantinė chemija statusas T sritis chemija apibrėžtis Mokslas, kvantinės mechanikos metodais tiriantis cheminių junginių sandarą ir savybes. atitikmenys: angl. quantum chemistry rus. квантовая химия … Chemijos terminų aiškinamasis žodynas

квантовая химия — kvantinė chemija statusas T sritis fizika atitikmenys: angl. quantum chemistry vok. Quantenchemie, f rus. квантовая химия, f pranc. chimie quantique, f … Fizikos terminų žodynas

КВАНТОВАЯ ХИМИЯ — область теоретич. химии, в к рой вопросы строения и реакционной способности хим. соединений, вопросы химической связи рассматриваются на осн. представлений и методов квантовой механики … Большой энциклопедический политехнический словарь

КВАНТОВАЯ ХИМИЯ — раздел теоретич. химии, в к ром строение и свойства хим. соединений, реакц. способность, кинетика и механизм хим. реакций рассматриваются на основе представлений квантовой механики. Сложность исследуемых объектов и процессов приводит к… … Естествознание. Энциклопедический словарь

Источник

Что изучает квантовая химия

Введение в курс квантовой химии

Таким образом, мы видим, что силе притяжения между ядрами и электронами противостоят сразу две «черные» силы электростатического отталкивания ядер и электронов друг от друга. Таким образом, здравый смысл отказывает в праве на существование молекулярным телам любой сложности.

Что изучает квантовая химия

Что изучает квантовая химия

Таким образом, мы видим, что для такой простой системы, включающей два положительных заряда и один отрицательный, силы Кулоновского притяжения между ними в восемь раз превышают силы Кулоновского отталкивания. Вот это и есть самое грубое представление о связывании ядер и электронов в молекулярных системах.

Результатом применения методов квантовой химии является информация о плотностях электронных состояний, распределение электронной плотности, потенциальные поверхности реакций и барьеры перегруппировок, расчет различных спектроскопических величин, таких как колебательные спектры, электронные и рентгеновские спектры, оптические спектры, параметры спектров ядерного и электронного магнитных резонансов.

В настоящее время квантовая химия является, пожалуй, самым дешевым, доступным и универсальным методом исследования атомной и электронной структур вещества. Правда необходимо понимать, что человечество, тем не менее, не может совсем отказаться от дорогостоящих экспериментальных методик исследования вещества, так как результаты квантово-химических исследований необходимо подтверждать ключевыми экспериментами.

В настоящее время, тем не менее, подавляющее большинство расчетов направлено на получение дополнительной информации об уже известных и реально существующих объектах. Но даже с учетом этого обстоятельства информативность теоретических методов существенно выше! Разве можно в одном эксперименте получить равновесную атомную структуру, дипольный момент, теплоту образования, потенциалах ионизации, распределении зарядов, порядках связей, спиновой плотности, изучить спектроскопические характеристики вещества? Безусловно, существует определенное ограничение достоверности получаемых результатов, однако ограничения методов квантовой химии известны, что позволяет во многих случаях реалистично оценивать их точность и адекватность. В ряде же случаев надежность получаемых квантово-химических данных даже выше, нежели чем экспериментальных. Так, экспериментальное определение теплоты образования полициклического алкана представляют собой длительную, дорогую, сложную и многоступенчатую процедуру, тогда как расчет займет несколько секунд на дешевом компьютере, причем точность будет даже выше, чем в эксперименте!

Однако очевидно, что это редкий случай. В подавляющем большинстве случаев качество результатов в значительной степени определяется адекватностью выбираемой модели. Так в качестве примера можно привести исследование потенциальной кривой образования/диссоциации молекулы водорода.

Что изучает квантовая химия

Первая кривая получается тогда, когда в качестве волновой функции системы выбирается синглет, т.е. когда спины электронов антипараллельны. Как видим, эта волновая функция хорошо описывает экспериментальную кривую только в области ее минимума. Вторая потенциальная кривая соответствует триплетной волновой функции (спины параллельны). Как видим, она хорошо описывает только диссоциационный предел с фактически не взаимодействующими атомами водорода. Как видим, реальную систему необходимо исследовать с использованием волновой функции, построенной из синглета и триплета.

Тогда предполагалось, что микрообъекты можно описать классической механикой в сочетании со статистикой. Так, например, была создана молекулярно-кинетическая теория теплоты, которая хорошо описывала ряд наблюдаемых явлений.

Однако вскоре обнаружились ряд непонятных эффектов, которые никоим образом не могли быть объяснены с точки зрения классической механики и электродинамики. Так оказалось неясным поведение теплоемкости кристаллов при низких температурах, не понятно было, почему свободные электроны не вносят вклад в теплоемкость металлов, наконец, было установлено резкое расхождение экспериментальной и теоретической картин спектра теплового излучения атомов («ультрафиолетовая» и «инфракрасные» катастрофы).

Что изучает квантовая химия

Затем были получены аналогичные результаты и для электронов. Так, Франк и Герц, измеряя электрический ток в парах ртути. Схема опыта была такова: Через пары ртути пропускался поток электронов, скорость которых и, следовательно, энергия, постепенно увеличивалась. До некоторого времени, электроны, сталкиваясь с атомами ртути, почти не теряют своей энергии, то есть удары упругие, так что электрический ток соответствует закону Ома, приблизительно равен приложенной разнице потенциалов. Когда же энергия электронов становится равной 4.9 эВ, ток резко падает. Это происходит потому, что электрон теряет энергию, сталкиваясь с атомом ртути, возбуждая его. Таким образом, возбудить атом ртути, передавая ему энергию менее 4.9 эВ. невозможно. Оказалось, однако, что возбуждения не происходит и тогда, когда энергия электрона больше величины 4.9 эВ.

Что изучает квантовая химия

Первое противоречие такой картины было в следующем: согласно теории электричества неподвижная система зарядов не может быть устойчивой. Если же предположить, что электроны вращаются вокруг ядра, то, двигаясь с ускорением, они должны постоянно испускать электромагнитное излучение, терять энергию и, в конце концов, упасть на ядро.

С другой стороны было получено неопровержимое свидетельство того, что электрон является волной! Это были опыты по интерференции электронов.

Непонятными с классической точки зрения оказались и спектры атомов, которые состоят из отдельных линий, соответствующих определенным частотам возбуждения. Наиболее просты спектры водорода и водородоподобных атомов, частоты которых описываются формулой:

Никакой классической моделью было не возможно объяснить такую форму атомных спектров.

2. Переход электронов может происходить только с одной стационарной орбиты на другую.

Из этой модели вытекали сразу множество важных следствий: так были получены квантовые числа, при помощи которых удалось описать линейчатые спектры атомов, магнитные моменты атомов, оценить радиусы орбит и скорости вращения электронов на них. Как дальше мы увидим, квантовые числа, впервые полученные в модели Бора, имеют четкий физический смысл.

Однако значение момента одновалентного атома не соответствовало этой картине. Поэтому Юленбек и Гаудсмит предположили, что в создании магнитного момента атома существенную роль играет собственный момент электрона, который возникает из-за того, что электрон, являясь заряженным шариком, вращается вокруг своей оси, в результате чего у него возникает механический и магнитный моменты.

Этот и другие подходы в настоящее время реализованы в наборе компьютерных программ, с которыми мы будем позже знакомится.

© И н с т и т у т Ф и з и к и
им. Л.В.Киренского 1998-2007

[an error occurred while processing this directive]

Источник

Квантовая химия – наука грядущего

Спецпроекты ЛГ / На переднем крае науки и техники

Что изучает квантовая химия

Квантовая химия с большим трудом пробивала себе дорогу в лаборатории химиков-экспериментаторов. Её долго воспринимали весьма скептически, поскольку расчёты, произведённые на основе квантово-химических формул, не сходились порой с результатами классических расчётов. Это легко объяснимо – ведь основа всех вычислений в квантовой механике – уравнение Шредингера –может быть решено строго лишь для систем, состоящих из одной или двух частиц – уже молекула водорода являет собой неразрешимую задачу. Поэтому для квантово-химических расчётов применяются определённые допущения, упрощающие задачу, но не искажающие общей картины. Со временем квантово-химические методы вошли в повседневную практику современных химических изысканий. Толчком послужила компьютеризация исследований.

Впрочем, обо всём по порядку.

Рождение квантовой химии

Квантовая химия зародилась в середине 20-х годов XX столетия. Её становление шло параллельно с развитием квантовой механики, служащей фундаментом для перспективной молодой науки. Весьма любопытным является тот факт, что основные приёмы и методы квантовой химии, реализуемые в алгоритмах таких современных вычислительных программ, были разработаны за очень короткий промежуток времени – около 10 лет. Столь резкий взлёт объясняется уникальным стечением следующих обстоятельств.

Чем дальше продвигались химики в изучении строения вещества, тем больше возникало у них вопросов. Почему из атомов водорода образуются только двухатомные молекулы? Почему молекула Н2О имеет форму треугольника, а в СО2 все три атома лежат на одной прямой? Почему состоящие из углерода алмаз – изолятор, а графит – проводник? Подобный список можно продолжать до бесконечности, но ведь эти вопросы относятся к свойствам уже известных веществ, а главная задача химии – получение новых соединений с наперёд заданными, нужными человеку свойствами.

В решении всех этих проблем важную роль играет относительно молодая наука – квантовая химия, которая не просто ещё одна ветвь химии (наряду с неорганической, органической, коллоидной и другими). Она служит для них теоретическим фундаментом, а её суть состоит в применении квантовой механики для определения как структуры атомов и молекул, так и их возможных превращений.

В принципе основное уравнение квантовой механики – уравнение Шредингера – можно записать для системы, состоящей из многих ядер и электронов (то есть для атомов, молекул, ионов, кристаллов), и его решение в виде волновой функции полностью определит её строение и поведение. Основное препятствие состоит в том, что даже в случае всего двух электронов это уравнение точно не решается, а при увеличении их числа трудности многократно возрастают.

Поэтому с самого начала квантовые химики столкнулись с необходимостью ввода каких-то упрощений. Им пришлось создавать вычислительные методы, часто базирующиеся на нестрогих правилах, изобретательности и интуиции их авторов. А об эффективности метода судили по его способности объяснять уже известные факты и предсказывать новые.

Тогда не существовало единой теории, способной объяснить широкий круг химических явлений. И вот в сотрудничестве с физикой химия стала превращаться в точную науку, перенимая её математический аппарат.

Начало исследованиям в области квантовой химии положила работа Вернера Гейзенберга 1926 года. Он провёл квантово-механический расчёт атома гелия, показав возможность его существования в двух различных состояниях, введя понятие «квантово-механического резонанса».

В 1927 году Вальтер Гейтлер и Фриц Лондон приступили к разработке квантово-механической теории химической связи. Они провели первые приближённые расчёты молекулы водорода.

В 1928 году будущий нобелевский лауреат Лайнус Полинг предложил теорию резонанса, а также выдвинул идею о гибридизации атомных орбиталей. Теория резонанса, основанная на принципах квантовой механики, очень точно описывала молекулы, обладающие простыми химическими связями (связями, образованными одной парой электронов), но совершенно не подходила для моделирования поведения молекул с более сложной структурой.

Мировое признание квантовой химии

Работы В. Гейзенберга (расчёт атома гелия), а также В. Гейтлера и Ф. Лондона (расчёт молекулы водорода) послужили основой квантовой теории многоэлектронных систем. Лайнус Полинг совместно с Джоном Кларком Слейтером разработал качественную химическую теорию – метод электронных пар (более известный как метод валентных связей). Основная идея этого метода заключается в предположении, что при образовании молекулы атомы в значительной степени сохраняют свою электронную конфигурацию (электроны внутренних оболочек), а силы связывания между атомами обусловлены обменом электронов внешних оболочек в результате спаривания спинов (моментов вращения). Также им было введено новое количественное понятие электроотрицательности в 1932 году. Его работы были отмечены Нобелевской премией в 1954 году.

Примерно в это же время Дуглас Хартри, развивая теорию многоэлектронных структур, предложил метод самосогласованного поля и применил его для расчёта атомов и атомных спектров. В названном методе состояние отдельной частицы сложной системы (кристалла, раствора, молекулы и т. п.) определяется усреднённым полем, создаваемым всеми остальными частицами и зависящим от состояния каждой частицы. Тем самым состояние системы согласуется с состояниями её частей (атомов, ионов, электронов), с чем и связано название метода.

В 1930 году академик Владимир Александрович Фок развил метод Хартри, подняв планку точности расчётов.

С атомной орбиты – на молекулярную

В этот же период был разработан один из основополагающих методов квантовой химии – метод молекулярных орбиталей.

В опубликованных на тот момент Эрвином Шрёдингером, Максом Борном и Вернером Гейзенбергом подробных математических выкладках по квантовой химии содержались формулы, которые можно было использовать для описания поведения электронов в атомах. Тем не менее электронная структура молекул поддавалась анализу с очень большим трудом, и в 1927 году Р.С. Малликен, работая с Ф. Хундом в Гёттингенском университете в Германии, предположил, что атомы соединяются в молекулы в процессе, называемом образованием химических связей, таким образом, что их внешние электроны ассоциируются с молекулой в целом. Следовательно, внешние электроны молекулы, которые определяют многие из её важных свойств, находятся на молекулярных орбиталях, а не на орбиталях отдельных атомов. Р.С. Малликен доказал, что молекулярные орбитали могут быть описаны с помощью точных математических формул, благодаря чему можно до значительных деталей предсказать физические и химические свойства вещества. В 1966 году Р.С. Малликену была присуждена Нобелевская премия по химии «за фундаментальную работу по химическим связям и электронной структуре молекул, проведённую с помощью метода молекулярных орбиталей». «Метод молекулярных орбиталей означает совершенно новое понимание природы химических связей, – сказала Инга Фишер-Джалмар в своём вступительном слове от имени Шведской королевской академии наук. – Существовавшие ранее идеи исходили из представления, что образование химических связей зависит от полного взаимодействия между атомами. Метод молекулярных орбиталей, напротив, опираясь, на положения квантовой механики, отталкивается от взаимодействия между всеми атомными ядрами и всеми электронами молекулы. Этот метод внёс чрезвычайно важный вклад в понимание нами качественного аспекта образования химических связей и электронной структуры молекул».

Ещё одной жемчужиной квантовой химии стала теория кристаллического поля, предложенная немецким учёным Гансом Бете в 1929 году.

Но никто из перечисленных выше учёных не использовал название «квантовая химия» – впервые оно появилось в качестве заглавия монографии великого германо-советского учёного Ганса Густавовича Гельмана. Эмигрировав в 1934 году из Германии, он уже в 1937-м написал и издал фундаментальную монографию «Квантовая химия». Гельман независимо от нобелевского лауреата Ричарда Фейнмана вывел ряд формул, получивших название электростатической теоремы Гельмана–Фейнмана.

Ученик Гельмана, старейший квантовый химик России, сотрудник Института биоорганической химии Михаил Ковнер (1910–2006) пишет, что «эта теорема стала одним из основных инструментов квантовой химии. Но помимо своего чисто прикладного значения она представляла, можно сказать, и философский интерес. Дело в том, что Шредингер, Гейзенберг, Дирак главное внимание уделяли понятию энергии (её определению в классической и квантовой механике), а понятие силы у них отсутствовало. Однако с точки зрения принципа соответствия Бора должна существовать определённая связь между классическими и квантовыми величинами. Именно теорема Гельмана–Фейнмана вводит аналог понятия силы в квантовую механику и тем самым заполняет указанный пробел».

Ганс Гельман одним из первых предложил использовать те самые «допущения», чтобы упростить квантово-химические расчёты.

Одна из наиболее существенных трудностей при рассмотрении химических объектов с точки зрения квантовой механики заключается в том, что решения уравнения Шредингера очень сложны. С учётом того что самыми прогрессивными на тот момент вычислительными средствами были арифмометры, нетрудно представить какой сложной задачей было получение адекватного решения: в ходе приближённых вычислений неизбежно накапливались погрешности, соизмеримые с искомой величиной, и работа теряла всякий смысл. Ганс Гельман предложил использовать для решения уравнений данные, взятые из эксперимента.Таким образом, без преувеличения можно сказать, что Ганс Гельман первым разработал полуэмпирический метод решения квантово-химических задач.

Также Гельман ввёл понятие «валентного состояния», в которое переходят атомы при сближении, чем поставил теорию химических реакций на количественную основу.

Компьютерная эра квантовой химии

Что изучает квантовая химия
Студент сдаёт экзамен по квантовой химии

После Второй мировой войны начался мощный взлёт вычислительной техники. Несмотря на то что компьютеры конца 40-х – начала 50-х годов были очень громоздкими и медленными (по «электронной мощи» современный сотовый телефон превосходит все вычислительные средства, вместе взятые на начало 50-х годов), у них была одна замечательная особенность (как, впрочем, и у современных компьютеров): они могли производить однотипные операции с массивами числовых данных в объёмах, немыслих для человека. Это качество как нельзя лучше подходило для реализации численных (приближённых) расчётов.

Уже на тот момент в квантовой химии стали выделяться две тенденции: полуэмпирические методы и методы, основанные только лишь на теоретической базе, без учёта экспериментальных данных.

В полуэмпирических методах сложные, занимающие до 70 процентов компьютерного времени расчёты «интегралов межэлектронного взаимодействия» заменяются постоянными величинами, или эти интегралы просто обнуляются. Это называется параметризацией интегралов.

Качество полуэмпирических методов можно оценить по двум критериям. Во-первых, по тому, какое количество интегралов параметризуется. Во-вторых, по уровню достоверности экспериментальных данных, которые используются в параметризации.

Развитие полуэмпирических методов происходило в течение 40 лет (примерно с 1950 по 1990 год). Следует отметить, что полуэмпирические методы позволили в своё время продвинуться в исследовании механизмов химических реакций. С появлением достаточно мощных компьютеров они стали мощным инструментом в исследовании сложных химических систем.

Ко второй группе относятся методы, в соответствии с которыми вычисление проводится исключительно на теоретической базе, то есть без введения в расчётную схему каких-либо параметров, полученных экспериментальным путём. При расчёте все величины имеют конкретный физический смысл. Достоинство этих методов – высокая точность и универсальность, но они крайне сложны, поэтому их применение не было широким.

Моделировать, а не перебирать варианты!

На протяжении многих десятилетий химия оставалась наукой в основном экспериментальной. Новые вещества и новые технологии рождались в ходе многочисленных экспериментов, основанных на интуиции исследователя. И вот моделирование с помощью квантово-химических расчётов открывает химикам новые горизонты, когда, возможно, станет ненужной и сама по себе химическая лаборатория. Это относится в первую очередь к разработке эффективных и недорогих катализаторов – основы современных нефте- и газохимических технологий.

Понимание строгой взаимосвязи между молекулярной структурой вещества и его физико-химическими свойствами, в том числе и каталитической активностью, открывает перед исследователем подходы к решению целого ряда практических задач. Как известно, каталитические превращения органических и неорганических веществ лежат в основе большинства химико-технологических процессов. От катализаторов напрямую зависят объёмы выработки целевого продукта, условия проведения процесса, его аппаратное оформление и особенности технологии в целом. Нередко даже экономика производства определяется именно стоимостью катализатора и затратами на его обслуживание.

В такой ситуации одним из приоритетных направлений развития прикладной химии становится разработка научных основ поиска наиболее оптимальных катализаторов для существующих промышленно важных реакций, или же, наоборот, – подбор к уже разработанному катализатору реакции, в результате которой образуется тот или иной целевой продукт химической промышленности с высокими выходом и селективностью. Очевидно, исследователь, поставивший перед собой подобную задачу в одном из её вариантов, будет вынужден рассматривать механизмы элементарных стадий химических процессов, равно как и свойства, и строение реагирующих веществ и катализаторов на микроуровне. Значительную помощь в такой работе может оказать аппарат квантовой химии.

Квантово-химические расчёты могут подтвердить или опровергнуть существование тех или иных интермедиатов, поскольку оно обуславливается возможностью или невозможностью образования соответствующих молекулярных орбиталей. Так, обобщённый квантово-химический принцип объясняет, например, почему димеризация этилена может протекать только в присутствии катализаторов, но практически неосуществима без них.

Интермедиат (лат. intermedius – средний) – промежуточное вещество с коротким временем жизни, образующееся в ходе химической реакции и затем реагирующие далее до продуктов реакции. Ввиду того, что интермедиаты очень быстро реагируют, их концентрация в реакционной смеси очень мала. Поэтому их образование либо теоретически постулируют, либо обнаруживают при помощи современных физико-химических методов анализа.

Методы квантовой химии, реализованные в компьютерных программных продуктах, легли в основу нового подхода к исследованию свойств, веществ, для которого не требуется ни синтезировать или выделять, ни очищать от примесей, ни проводить физико-химические исследования для получения данных о свойствах химического соединения. При таком подходе к исследованию химических свойств вещества не нужна даже химическая лаборатория как таковая. Бурный прогресс в области вычислительной техники и развитие программного обеспечения привели к научной революции в этой области, и теперь можно изучать неизвестные молекулы, промежуточные соединения, переходные состояния в ходе химических реакций и даже не синтезированные пока химические структуры. Опыт проведения подобных расчётов показывает, что результатам, полученным с помощью адекватных методов, можно доверять и экспериментальная проверка их практически всегда подтверждает.

В этом году Нобелевская премия по химии была присуждена именно за моделирование сложных химических систем.

В лабораториях РН-ЦИР учёные «Роснефти» ведут исследования в области квантово-химического моделирования. Эти исследования относятся к анализу химических реакций на поверхности различных перспективных катализаторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *