Что изучает клеточный уровень в биологии

Химия, Биология, подготовка к ГИА и ЕГЭ

Уровни организации живой природы

Выделяют 8 уровней.

Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.

Каждый следующий уровень обязательно содержит в себе все предыдущие.

Давайте разберем каждый уровень подробно.

8 уровней организации живой природы

1. Молекулярный уровень организации живой природы

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.

Поэтому именно он лег в основу классификации Живой природы на царства — какое питательное вещество является основным у организма: у животных — белок, у грибов — хитин, у растений это- углеводы.

Науки, которые изучают живые организмы именно на этом уровене:

Что изучает клеточный уровень в биологии

2. Клеточный уровень организации живой природы

Включает в себя предыдущий — молекулярный уровень организации.

На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»

Науки, изучающие клеточный уровень организации:

Что изучает клеточный уровень в биологии

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации:

Включает в себя 2 предыдущих уровня — молекулярный и клеточный.

Этот уровень можно назвать «многоклеточным» — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

4. Органный (ударение на первый слог) уровень организации жизни

Тканевый и органный уровни организации — изучают науки:

Что изучает клеточный уровень в биологии

5. Организменный уровень

Включает в себя все предыдущие уровни: молекулярный, клеточный, тканевый уровни и органный.

На этом уровне идет деление Живой природы на царства — животных, растений и грибов.

Характеристики этого уровня:

Что изучает клеточный уровень в биологии

Что изучает клеточный уровень в биологии

6. Популяционно-видовой уровень организации жизни

Включает молекулярный, клеточный, тканевый уровни, органный и организменный.

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

Науки, изучающие этот уровень:

Что изучает клеточный уровень в биологии

7. Биогеоценотический уровень организации жизни

На этом уровне уже учитывается почти все:

Наука, изучающая этот уровень — Экология

Ну и последний уровень — высший!

8. Биосферный уровень организации живой природы

Он включает в себя:

Источник

Клеточный уровень

Что изучает клеточный уровень в биологии Что изучает клеточный уровень в биологии Что изучает клеточный уровень в биологии Что изучает клеточный уровень в биологии

Что изучает клеточный уровень в биологии

Что изучает клеточный уровень в биологии

На клеточном уровне организации основной структурной и функциональной единицей всех живых организмов является клетка. На клеточном уровне так же, как и на молекулярно-генетическом, отмечается однотипность всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. История жизни на нашей планете начиналась с этого уровня организации.

Сегодня наукой точно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка.

Клеткапредставляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию, т.е. наделена всеми признаками живого организма.

Клеточные структуры лежат в основе строения любого живого организма, каким бы многообразным и сложным ни представлялось его строение. Наука, изучающая живую клетку, называется цитологией. Она изучает строение клеток, их функционирование как элементарных живых систем, исследует функции отдельных клеточных компонентов, процесс воспроизводства клеток, приспособление их к условиям среды и др. Также цитология изучает особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология может быть названа физиологией клетки. Успехи современной цитологии неразрывно связаны с достижениями биохимии, биофизики, молекулярной биологии и генетики.

В основе цитологии лежит утверждение, что все живые организмы (животные, растения, бактерии) состоят из клеток и продуктов их жизнедеятельности. Новые клетки образуются путем деления существовавших ранее клеток. Все клетки сходны по химическому составу и обмену веществ. Активность организма как целого слагается из активности и взаимодействия отдельных клеток.

Открытие существования клеток произошло в конце XVIIв., когда был изобретен микроскоп. Впервые клетка была описана английским ученым Р. Гуком в 1665 г., когда он рассматривал кусочек пробки. Поскольку его микроскоп был не очень совершенным, то, что он увидел, было на самом деле стенками отмерших клеток. Потребовалось почти двести лет, чтобы биологи поняли, что главную роль играют не стенки клетки, а ее внутреннее содержимое. Среди создателей клеточной теории следует также назвать А. Левенгука, показавшего, что ткани многих растительных

организмов построены из клеток. Он же описал эритроциты, одноклеточные организмы и бактерии. Правда, Левенгук, как и другие исследователи XVII в., видел в клетке лишь оболочку, заключавшую в себе полость.

Значительное продвижение в изучении клеток произошло в начале XIX в., когда на них стали смотреть как на индивидуумы, обладающие жизненными свойствами. В 1830-е гг. было открыто и описано клеточное ядро, что привлекло внимание ученых к содержимому клетки. Тогда же удалось увидеть деление растительных клеток. На основе этих исследований и была создана клеточная теория, ставшая величайшим событием в биологии XIX в. Именно клеточная теория дала решающие доказательства единства всей живой природы, послужила фундаментом для развития эмбриологии, гистологии, физиологии, теории эволюции, а также понимания индивидуального развития организмов.

Мощный толчок цитология получила с созданием генетики и молекулярной биологии. После этого были открыты новые компоненты, или органеллы, клетки — мембрана, рибосомы, лизосомы и др.

По современным представлениям, клетки могут существовать как самостоятельные организмы (например, простейшие), так и в составе многоклеточных организмов, где есть половые клетки, служащие для размножения, и соматические клетки (клетки тела). Соматические клетки различаются по строению и функциям — существуют нервные, костные, мышечные, секреторные клетки. Размеры клеток могут варьироваться от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе). Живой организм образован миллиардами разнообразных клеток (до 10 15 ), форма которых может быть самой причудливой (паук, звезда, снежинка и пр.).

Что изучает клеточный уровень в биологии

Установлено, что несмотря на большое разнообразие клеток и выполняемых ими функций, клетки всех живых организмов сходны по химическому составу: особенно велико в них содержание водорода, кислорода, углерода и азота (эти химические элементы составляют более 98% всего содержимого клетки); 2% приходится на примерно 50 других химических элементов.

Клетки живых организмов содержат неорганические вещества — воду (в среднем до 80%) и минеральные соли, а также органические соединения: 90% сухой массы клетки приходится на биополимеры — белки, нуклеиновые кислоты, углеводы и липиды. И, наконец, научно доказано, что все клетки состоят из трех основных частей:

1) плазматической мембраны, контролирующей переход веществ из окружающей среды в клетку и обратно;

2) цитоплазмы с разнообразной структурой;

3) клеточного ядра, в котором содержится генетическая информация.

Кроме того, все животные и некоторые растительные клетки содержат центриоли — цилиндрические структуры, образующие клеточные центры. У растительных клеток также есть клеточная стенка (оболочка) и пластиды — специализированные структуры клеток, часто содержащие пигмент, от которого зависит окраска клетки.

Клеточная мембрана состоит из двух слоев молекул жироподоб-ных веществ, между которыми находятся молекулы белков. Мембрана поддерживает нормальную концентрацию солей внутри клетки. При повреждении мембраны клетка погибает.

Цитоплазма представляет собой водно-солевой раствор с растворенными и взвешенными в нем ферментами и другими веществами. В цитоплазме располагаются органеллы — маленькие органы, отграниченные от содержимого цитоплазмы собственными мембранами. Среди них — митохондрии — мешковидные образования с дыхательными ферментами, в которых высвобождается энергия. Также в цитоплазме располагаются рибосомы, состоящие из белка и РНК, с помощью которых осуществляется биосинтез белка в клетке. Эн-доплазматическая сеть — это общая внутриклеточная циркуляционная система, по каналам которой осуществляется транспорт веществ, а на мембранах каналов находятся ферменты, обеспечивающие жизнедеятельность клетки. Важную роль в клетке играет клеточный центр, состоящий из двух центриолей. С него начинается процесс деления клетки.

Важнейшей частью всех клеток (кроме бактерий) является ядро, в котором находятся хромосомы — длинные нитевидные тельца, состоящие из ДНК и присоединенного к ней белка. Ядро хранит и воспроизводит генетическую информацию, а также регулирует процессы обмена веществ в клетке.

Клетки размножаются путем деления исходной клетки на две дочерние. При этом дочерним клеткам передается полный набор хромосом, несущих генетическую информацию, поэтому перед делением число хромосом удваивается. Такое деление клеток, обеспечивающее одинаковое распределение генетического материала между дочерними клетками, называется митозом.

Многоклеточные организмы также развиваются из одной клетки — яйца. Однако в процессе эмбриогенеза клетки видоизменяются. Это приводит к появлению множества разных клеток — мышечных, нервных, кровяных и т.д. Разные клетки синтезируют разные белки. Тем не менее, каждая клетка многоклеточного организма несет в себе полный набор генетической информации для построения всех белков, необходимых для организма.

В зависимости от типа клеток все организмы делятся на д в е группы:

1) прокариоты — клетки, лишенные ядра. В них молекулы ДНК не окружены ядерной мембраной и не организованы в хромосомы. К прокариотам относятся бактерии;

Таким образом, между прокариотами и эукариотами есть существенные отличия в структуре и функционировании генетического аппарата, клеточных стенок и мембранных систем, синтезе белка и т.д. Предполагается, что первыми организмами, появившимися на Земле, были прокариоты. Так считалось до 1960-х гг., когда углубленное изучение клетки привело к открытию архебактерий, строение которых сходно как с прокариотами, так и с эукариотами. Вопрос о том, какие одноклеточные организмы являются более древними, о возможности существования некой первоклетки, из которой потом появились все три эволюционные линии, до сих пор остается открытым.

Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы по способу питания разделить на д в а вида:

1) автотрофные организмы — организмы, не нуждающиеся в органической пище и могущие осуществлять жизнедеятельность за счет ассимиляции углекислоты (бактерии) или фотосинтеза (растения), т.е. автотрофы сами производят необходимые им питательные вещества;

2) гетеротрофные организмы — это все организмы, которые не могут обходиться без органической пищи.

Позднее были уточнены такие важные факторы, как способность организмов синтезировать необходимые вещества (витамины, гормоны и т.д.) и обеспечивать себя энергией, зависимость от экологической среды и др. Таким образом, сложный и дифференцированный характер трофических связей свидетельствует о необходимости системного подхода к изучению жизни и на онтогенетическом уровне. Так была сформулирована концепция функциональной системности П.К. Анохина, в соответствии с которой в одноклеточных и многоклеточных организмах согласованно функционируют различные компоненты систем. При этом отдельные компоненты содействуют и способствуют согласованному функционированию других, обеспечивая тем самым единство и целостность в осуществлении процессов жизнедеятельности всего организма. Функциональная системность также проявляется в том, что процессы на низших уровнях организуются функциональными связями на высших уровнях организации. Особенно заметно функциональная системность проявляется у многоклеточных организмов.

Источник

Биология клетки/Введение

Содержание

Клетка — основа жизни [ править ]

Задание Прежде чем читать дальше, перечислите основные свойства живого. После выполнения задания — см. Основные научные проблемы биологии и их связь с изучением клеток

Благодаря каким своим свойствам клетка — живая? Поиски ответа на этот вопрос, выяснение деталей строения и работы клеток — одно из главных направлений работы современных биологов.

Уровни организации живого и система биологических наук [ править ]

Обычно выделяют четыре основных уровня организации живого [ править ]

Преимущество этого подхода — в том, что любая живая система «включена» во все эти уровни организации. Недостатки — прежде всего в том, что к каждому из этих уровней относятся системы принципиально разного уровня сложности. Даже клеточный уровень включает клетки прокариот и эукариот — а это как раз системы принципиально разного уровня сложности. Организменный же уровень включает и бактерий, и человека — системы, еще сильнее различающиеся по уровню сложности. Кроме того, до уровня вида все объекты этой классификации связаны генетически и представляют собой систему с единым генофондом. Экосистема, даже несмотря на наличие горизонтального переноса генов, такой системой не является. Эти недостатки побуждают многих авторов искать другие критерии выделения уровней организации — например, использовать длительность их существования (выделяя онтогенетический и филогенетический уровни).

Вопрос 2 Какие из основных уровней относятся к онтогентическому, а какие — к филогенетическому?

Часто (особенно в школьных учебниках и программах) предлагается выделять более дробные уровни:

Недостатки такого варианта еще более очевидны.

Вопрос 3 Какие недостатки вы видите в дробной иерархии уровней? Задание Попробуйте предложить свои критерии для выделения уровней организации и создать свою классификацию этих уровней.

Впрочем, иногда на вопрос «Какие бывают уровни организации живого?» от учащегося могут требовать и ответа вроде «Ядерный и доядерный«. Под такую классификацию также могут попадать системы разной сложности, но на вышеупомянутом клеточно-молекулярном уровне все они будут обладать гораздо более схожими свойствами.

Особенности клеточного уровня [ править ]

Система биологических наук. Разделы биологии, изучающие клетку [ править ]

Сложность живых систем отражена в сложности биологии как науки и многообразии ее разделов. Во-первых, существуют частные науки, изучающие отдельные группы живых организмов — зоология, микология, ботаника, протистология, бактериология, вирусология. Нашим собственным видом занимается антропология.

Каждая из них делится на ряд ещё более частных разделов. Например, в зоологии выделяют энтомологию, орнитологию, ихтиологию и др., в ботанике — бриологию, альгологию (последняя наука, правда, может быть отнесена и к протистологии).

Другие биологические науки в основном связаны с определенными уровнями организации живого. Молекулярный уровень изучают биохимия, молекулярная биология, молекулярная генетика. По своим методам (а отчасти и по объекту изучения) близка к этим наукам вирусология.

Тесно связаны с ними и науки, изучающие клеточный уровень — цитология (клеточная биология), гистология, иммунология и др.

Организменный уровень изучают такие науки, как анатомия, физиология и эмбриология (биология развития). С этим уровнем тесно связаны и многие разделы генетики (например, генетика развития).

Популяционно-видовой уровень изучают популяционная генетика и популяционная экология. Кроме того, этим уровнем занимается эволюционная биология, так как на этом уровне организации происходят процессы микроэволюции. Этот же уровень — объект изучения систематики.

Экосистемный уровень — основной объект изучения большинства разделов экологии. К этому уровню смещаются в последние годы и интересы палеонтологов: всё большее внимание они уделяют не отдельным видам, а экосистемам былых геологических эпох. Наконец, одна из основных проблем современной эволюционной биологии — разработка теории эволюции экосистем.

Есть и науки, объект изучения которых — не уровень организации или группа организмов, а какой-то аспект свойств живого. К таким наукам можно отнести, например, биоинформатику и биофизику.

Вопрос 4 А действительно, где и как могут встретиться и что (с наибольшей вероятностью) будут обсуждать при встрече орнитолог и вирусолог? Попробуйте ответить на этот вопрос (допустим, что обсуждать они будут биологические проблемы, представляющие взаимный интерес, а не результаты чемпионата мира по футболу).

Редукционистский подход сыграл решающую роль в прогрессе биологии в XX веке [ править ]

За последние десятилетия наибольших успехов достигла молекулярная биология. Во многом эти успехи связаны с использованием принципа редукционизма. В применении к изучении клетки этот принцип состоит в том, что возможно объяснение сложных процессов в клетке и организме как результата простых химических реакций.

Законы физики и химии (часто имеющие вид запретов) выполняются в живой природе, так как живые организмы состоят из тех же атомов и полей, что и неживая природа. В основе жизнедеятельности клеток лежат химические реакции, а в основе жизнедеятельности и развития организма — работа клеток. Значит, понять работу организма можно, изучая химию. Можно изучить атомы, потом молекулы, химические реакции, в которых участвуют эти молекулы, и мы поймем, например, процесс пищеварения. Так во многих случаях и произошло. Оказалось, что очень многие биологические процессы можно описать «на языке» химии.

Редукционистский подход имеет границы применимости в биологии [ править ]

А можно ли понять, как человек думает, если изучить все химические процессы в отдельных нейронах — нервных клетках его мозга? Поможет ли изучение химических реакций понять, почему у жирафа для добывания листьев с деревьев служит длинная шея, а у слона — хобот? Или объяснить, почему численность насекомых в разные годы различается сильно, а птиц — слабо?

Вряд ли это возможно — ведь даже самый точный химический анализ отдельных деталей компьютера не поможет понять принцип его работы. Дело в том, что любая система, состоящая из нескольких элементов, может приобретать новые свойства. Свойства системы зависят не только от свойств элементов, но и от взаимосвязей между ними. Изучая отдельные элементы, мы не поймем принципов работы системы. Поэтому так важен для многих разделов биологии системный подход. Например, чтобы понять работу мозга человека, важно изучать не только отдельные молекулы или клетки, но и сложные взаимодействия между клетками мозга, взаимосвязи мозга с органами чувств и с другими системами органов.

[2] А. А. Любищев. Редукционизм и развитие морфологии и систематики. (Точка зрения авторов цитированных работ может не совпадать с точкой зрения авторов учебника).

Многие важнейшие научные проблемы биологии связаны с изучением клеток [ править ]

К своему 125-летию журнал Science опубликовал список 125 важнейших научных проблем современности, из которых выделил 25 главных. Из этих 25 проблем 16 (!) перечисленных ниже имеют непосредственное отношение к биологии, а из этих 16-ти большинство связано с изучением клеточного уровня.

Важнейшие научные проблемы биологии по версии журнала Science [ править ]

В голове у редакторов, которые составляли этот список, царила приличная каша. Попробуйте в ней разобраться, а именно

[3] Важнейшие научные проблемы по версии журнала Science]

На самом деле в число основных научных проблем биологии имеет смысл включать только проблемы фундаментальных, но не прикладных исследований. Очевидно, что фундаментальные научные проблемы тесно связаны с основными свойствами живого. Ниже мы сформулируем их, учитывая и те, которые в общих чертах уже решены.

Источник

Клеточный уровень организации жизни

Клетка – представитель клеточного уровня жизни

Клетки являются основными структурными единицами живых организмов, поскольку именно из них они состоят. В то же время сами клетки являются биосистемами, обладающими определенной сложностью, целостностью, дискретностью, особыми свойствами и существующими по специфическим законам.

Примечательно, что ряд свойств клетка как единица особого уровня организации живой материи получила от предыдущего – молекулярного – уровня.

Что изучает клеточный уровень в биологииСтруктурные и функциональные компоненты биосистемы «клетка»

Из различных молекул сформированы все компоненты клетки, в ней протекают реакции между молекулами простых и сложных химических соединений. Поэтому многие свойства клеточного уровня организации живой материи зависят от молекулярного уровня – его компонентов и их роли в жизнедеятельности клетки. Например, молекулы ДНК несут в себе генетический код, определяющий управление процессами синтеза клеточных белков.

Однако вышестоящий уровень организации живой материи (организменный уровень) тоже оказывает влияние на свойства и повеление биосистемы клеточного уровня. Клетки, например, имеют строение и свойства, обусловленные выполнением тех или иных функций в организме. Так, клетки нервной ткани отличаются от клеток выделительной или покровной ткани.

Как правило, свойства системы одного структурного уровня жизни не только влияют на повеление систем более высокого уровня, но и сами зависят от него. Однако эта особенность уровневого взаимовлияния не отражает их полностью, поскольку каждому присущи свои отличительные свойства. Если на молекулярном уровне можно детально рассматривать процесс репликации ДНК, то на клеточном уровне его значение оценивается как проявление жизнедеятельности клетки.

Клетка, как и биосистемы любого структурного уровня, характеризуется определенными, характеризующими ее специфическими свойствами: структурой и составом компонентов, протекающими процессами, организацией их целостности, ролью в природе.

Структурными элементами клеточного уровня являются структурные части клетки – молекулы и их комплексы, создающие поверхностный аппарат, ядро и цитоплазму с органоидами. Взаимодействие между ними обеспечивает целостность клетки в проявлении ее свойств как живой системы в отношениях с внешней средой.

Основные процессы клеточного уровня, присущие только этому уровню организации жизни, возникли в ходе эволюции живой материи: обмен веществ (метаболизм); поглощение и, следовательно, включение различных химических элементов Земли в содержимое живого организма; передача наследственной информации от клетки к клетке; накопление изменений в генетическом аппарате как отражение опыта взаимодействия со средой; реагирование на раздражения при этом взаимодействии.

Организация системы клеточного уровня

В ходе эволюции сформировался особый аппарат управления процессами, протекающими в биосистеме «клетка», – это ядро с содержащимися в нем хромосомами. Впервые появляется регулирование процессов жизнедеятельности по типу прямых и обратных связей; организуется упорядоченное протекание важнейших биосинтезов с помощью матричных структур и ферментов, обеспечивающих процессы жизнедеятельности клетки.

Значение клеточного уровня организации жизни

Клетка является основной структурной единицей всех живых организмов (за исключением вирусов). Благодаря многообразию форм и функций клетка существует и как свободноживущий одноклеточный организм, и как часть многоклеточного организма, влияя таким образом на все вышестоящие уровни жизни.

Именно с клеточного уровня началась жизнь на Земле. Сочетание свойств наследственности и изменчивости организмов обусловило огромное разнообразие форм живой материи.

Значение клеточного уровня состоит также в том, что здесь начинаются процессы жизни, поскольку биологические функции ДНК и РНК, матричный синтез органических соединений, ферментативная регуляция этих процессов осуществляются только в условиях живой клетки. Вне клетки нет жизни.

Функционируя, клетка вовлекает все разнообразие химических элементов Земли в биосистемы других уровней, запасает в них солнечную энергию и тем обеспечивает все процессы жизни в биосфере.

На клеточном уровне впервые в процессе эволюции живой материи сформировалась система хранения (кодирования) и система передачи наследственной (генетической) информации от поколения к поколению, обеспечивая преемственность и непрерывность жизни.

Важное значение имеет специализация клеток, приведшая к разнообразию их свойств, происходящих в них процессов и выполняемых функций. Благодаря клеточной специализации возникли различные ткани, в процессе эволюции появились сложные многоклеточные организмы со своими особыми свойствами и способностью существования в условиях различных сред жизни на нашей планете.

Большое значение имеет и тот факт, что именно на клеточном уровне произошло появление и обособление целостной самостоятельной биосистемы в виде элементарной живой клетки. Поэтому клетка стала основной единицей и элементарной формой жизни.

На клеточном уровне в глубокой древности произошло разделение этой биосистемы на разные формы; возникли прокариоты и эукариоты, автотрофы и гетеротрофы, анаэробы и аэробы, организмы неподвижные и подвижные, имеющие половой процесс и размножающиеся иным способом.

Появление живой клетки обусловило биологический круговорот веществ и передачи энергии, чем был обозначен качественно новый этап в истории Земли – появление ее биосферы.

Клеточный уровень организации живой материи – один из основополагающих этапов существования жизни на Земле.

Таким образом, клетка является основной формой организации и элементарной единицей живой материи. Из клеток построены все живые существа (кроме вирусов). Объединение комплекса сложных биологических структур и молекул в единую, целостную, дискретную биосистему,передача наследственной информации из поколения в поколение – основные особенности клеточного уровня жизни.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *