вращение плоскости поляризации в магнитном поле
Вращение плоскости поляризации
Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационной и т. д.
Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде — линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны — повёрнутая плоскость будет плоскостью поляризации в данный момент.
Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной), для упругих поперечных волн — акустически активной. Известен также поворот плоскости поляризации при отражении от анизотропной среды (см., например, магнитооптический эффект Керра).
Циркулярная анизотропия среды (и, соответственно, поворот плоскости поляризации распространяющейся в ней волны) может зависеть от наложенных на среду внешних полей (электрического, магнитного) и от механических напряжений (см. Фотоупругость). Кроме того, степень анизотропии и набег фаз, вообще говоря, могут зависеть от длины волны (дисперсия). Угол поворота плоскости поляризации линейно зависит при прочих равных условиях от длины пробега волны в активной среде. Оптически активная среда, состоящая из смеси активных и неактивных молекул, поворачивает плоскость поляризации пропорционально концентрации оптически активного вещества, на чём основан поляриметрический метод измерения концентрации таких веществ в растворах; коэффициент пропорциональности, связывающий поворот плоскости поляризации с длиной луча и концентрацией вещества, называется удельным вращением данного вещества.
В случае акустических колебаний поворот плоскости поляризации наблюдается лишь для поперечных упругих волн (так как для продольных волн плоскость поляризации не определена) и, следовательно, может происходить лишь в твёрдых телах, но не в жидкостях или газах.
Содержание
Использование
Эффект вращения плоскости поляризации света используется
См. также
Примечания
Литература
Вращение плоскости поляризации
Из Википедии — свободной энциклопедии
Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационной и т. д.
Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде — линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны — повёрнутая плоскость будет плоскостью поляризации в данный момент.
Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной), для упругих поперечных волн — акустически активной. Известен также поворот плоскости поляризации при отражении от анизотропной среды (см., например, магнитооптический эффект Керра).
Циркулярная анизотропия среды (и, соответственно, поворот плоскости поляризации распространяющейся в ней волны) может зависеть от наложенных на среду внешних полей (электрического, магнитного) и от механических напряжений (см. Фотоупругость). Кроме того, степень анизотропии и набег фаз, вообще говоря, могут зависеть от длины волны (дисперсия). Угол поворота плоскости поляризации линейно зависит при прочих равных условиях от длины пробега волны в активной среде. Оптически активная среда, состоящая из смеси активных и неактивных молекул, поворачивает плоскость поляризации пропорционально концентрации оптически активного вещества, на чём основан поляриметрический метод измерения концентрации таких веществ в растворах; коэффициент пропорциональности, связывающий поворот плоскости поляризации с длиной луча и концентрацией вещества, называется удельным вращением данного вещества.
В случае акустических колебаний поворот плоскости поляризации наблюдается лишь для поперечных упругих волн (так как для продольных волн плоскость поляризации не определена) и, следовательно, может происходить лишь в твёрдых телах, но не в жидкостях или газах (где поперечная составляющая отсутствует).
Магнитное вращение плоскости поляризации. Вывод рабочей формулы
МАГНИТНОЕ ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ
Методические указания к лабораторной работе №17
по физике (Раздел «Оптика»)
Составители: Т.П. Жданова, В.В. Илясов, А.П. Кудря, А.Б.Гордеева
Указания содержат краткое описание рабочей установки, методику изучения явления вращения плоскости поляризации в магнитном поле и получения зависимости угла вращения плоскости поляризации от индукции магнитного поля.
Методические указания предназначены для студентов инженерных специальностей всех форм обучения при выполнении лабораторного практикума по физике (раздел «Оптика»).
Печатается по решению методической комиссии факультета «Нанотехнологии и композиционные материалы»
Научный редактор проф., д.т.н. В.С. Кунаков
© Издательский центр ДГТУ, 2011
МАГНИТНОЕ ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ (ЭФФЕКТ ФАРАДЕЯ)
Цель работы:изучение явления вращения плоскости поляризации в магнитном поле, получение зависимости угла вращения плоскости поляризации от индукции магнитного поля.
Оборудование: измерительная установка (состоящая из соленоида, сахариметра COK-I со шкалой Вентцке), выпрямитель, амперметр, автотрансформатор ЛАТР, переключатель, трубка с исследуемым веществом 5% раствором сахара.
1. Теоретическая часть.
Магнитное вращение плоскости поляризации. Вывод рабочей формулы
Линейно поляризованный свет, проходя сквозь определенные вещества, называемые оптически активными, изменяет направление поляризации, причем величина этого изменения пропорциональна толщине пройденного слоя вещества. Это явление называют вращением плоскости поляризации.
Если явление наблюдается в отсутствие магнитного поля, говорят, что вещество обладает естественной оптической активностью.
Помимо того, к вращению плоскости поляризации может приводить приложение внешнего магнитного поля. В этом случае говорят о магнитном вращении плоскости поляризации.
Феноменологическое объяснение эффекта Фарадея заключается в том, что под действием магнитного поля показатели преломления для циркулярно право- и — левополяризованного света становятся различными. Вследствие этого при прохождении через среду (вдоль магнитного поля) линейно поляризованного излучения его циркулярно лево- и правополяризованные составляющие распространяются с разными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути . В результате плоскость поляризации линейно поляризованного монохроматического света с длиной волны , прошедшего в среде путь , поворачивается на угол
. (1)
В области не очень сильных магнитных полей разность линейно зависит от напряженности магнитного поля и в общем виде угол фарадеевского вращения описывается соотношением
(2)
где — напряженность магнитного поля; — постоянная Верде, зависящая от свойств вещества, длины волны излучения и температур. Эффект Фарадея по своей природе тесно связан с эффектом Зеемана, обусловленным расщеплением уровней энергии атомов и молекул магнитным полем.
В эффекте Фарадея ярко проявляется специфический характер вектора напряженности магнитного поля . Знак угла поворота плоскости поляризации при эффекте Фарадея (в отличие от случая естественной оптической активности) не зависит от направления распространения света (по полю или против поля). Поэтому многократное прохождение света через среду, помещенную в магнитное поле, приводит к возрастанию угла поворота плоскости поляризации в соответствующее число раз. Эта особенность эффекта Фарадея нашла применение при конструировании так называемых невзаимных оптических и радиомикроволновых устройств. Эффект Фарадея широко используется в научных исследованиях.
Для усиления магнитного вращения плоскости поляризации Фарадей дополнительно увеличил расстояние , проходимое светом в веществе, заставив луч многократно отразиться от концов исследуемого образца. Для этого концы образца серебрились (за исключением мест входа и выхода светового луча).
В данной работе исследуется вращение плоскости поляризации светового луча при прохождении через оптически активное вещество, находящееся в магнитном поле. Оптически активным веществом служит водный раствор сахара. Угол вращения плоскости поляризации в этом случае будет равняться сумме углов собственного вращения плоскости поляризации (за счет оптической активности раствора сахара) и магнитного вращения плоскости поляризации :
(3)
Вращением плоскости главного сечения анализатора устанавливают одинаковую освещенность обеих половин поля-зрения. В отсутствие трубки с оптически активным веществом в соленоиде это соответствует установке нуля, т.е. отсчету .
Рис.1. | После замыкания цепи соленоида (под влиянием возникшего в нем магнитного поля) произойдет магнитное вращение плоскости поляризации, и равномерность освещенности поля зрения нарушится. Вращением анализатора устанавливается размерность освещенности поля зрения и делается отсчет угла (рис.1) (4) |
Изменив направление магнитного поля, для чего с помощью переключателя изменяется направление тока в соленоиде, делают отсчет угла вращения плоскости поляризации
(5)
Из уравнений (4) и (5) выразим
(6)
Угол магнитного вращения плоскости поляризация найдем как среднеарифметическое для двух направлений магнитного поля из системы уравнений (6):
(7)
Это рабочая формула для определения угла магнитного вращения плоскости поляризации.
2. Описание экспериментальной установки.
Установка для изучения магнитного вращения плоскости поляризации (рис.2), состоит из полутеневого сахариметра COK-I (включающего: 1 – осветительную лампу; 2 – светофильтр; 3 – объектив; 4 – поляризатор; 5 – кварцевую пластину; 6 – кювету с раствором; 7 – анализатор; 8 – окуляр), соленоида (9), переключателя (10), выпрямителя (11), амперметра, вольтметра.
Для наблюдения вращения плоскости поляризации трубка с сахарным раствором помещена в соленоид, расположенный между скрещенными поляризатором и анализатором (николями).
Поле зрения между николями, «поставленными на темноту», просветляется. Чтобы добиться полного гашения света, нужно анализатор повернуть вокруг луча на угол , равный углу вращения плоскости поляризации. Когда поле зрения окуляра равномерно затемнено рис. 4в, измеряем угол по шкале рис. 3.
Внизу находится основная шкала (в градусах). Сверху расположена шкаланониуса, цена деления которого составляет десятую долю градуса. На данной шкале ведется отсчетположительного (вращение по часовой стрелке), и отрицательного (против часовой стрелки) угла поворота плоскости поляризации. Показан отчет положительного угла
1. Напряжение 220В на схему подается через шнуровой провод от розетки.
2. При проведении опыта схема включается под напряжение путем нажатия на кнопку «Пуск» только на время установки режима и снятия показаний.
3. Переключать ток ТОЛЬКО ПРИ ВЫКЛЮЧЕННОЙ КНОПКЕ «Пуск».
3. Порядок выполнения лабораторной работы:
Исследование зависимости угла вращения плоскости поляризации от индукции магнитного поля.
1. Трубка с раствором сахара установлена в соленоиде и не извлекается из него.
2. Включить источник света, вращая оправу окуляра зрительной трубы, установить максимальную резкость изображения таким образом, чтобы четко были видны: вертикальная линия, разделяющая поле зрения на две половины; штрихи и цифры шкалы и нониуса.
4. Изменить направление магнитного поля в соленоиде, установив переключатель в противоположное положение, сделать отсчет угла .
5. Вычислить угол магнитного вращения плоскости поляризации по формуле (7).
6. Изменяя силу тока в цепи соленоида от I A до 4,5 А (с шагом 0,5 А), произвести измерение угла магнитного вращения плоскости поляризации при каждой силе тока (в соответствии с пп.4-6). Результаты измерения занести в таблицу.
7. Вычислить индукцию магнитного поля соленоида при всех значениях силы тока по формуле:
где — магнитная постоянная, — сила тока; — число витков длина соленоида.
8. Вычислить относительную погрешность и доверительный интервал по формулам:
; ,
где
9. Построить график зависимости .
10. Определить постоянную удельного магнитного вращения (постоянную Верде) сахарного раствора по формуле:
, где -напряжённость магнитного поля.
11. Вычислить относительную погрешность и доверительный интервал по формулам:
; ,
где
Контрольные вопросы
1. В чем заключается явление поляризации?
2. Какой свет называется плоскополяризованным, поляризованным по кругу, эллиптически поляризованным?
3. В чем заключается явление оптической активности?
4. Каким соотношением определяется угол поворота плоскости поляризации в веществе?
5. В чем заключается эффект Фарадея? Какова его физическая природа?
6. Поляризованный свет проходит сквозь прозрачное вещество, находящееся в продольном магнитном поле, отражается от зеркала ивозвращается обратно, проходя магнитное поле в противоположном направлении. Будет ли при этом угол поворота поляризации удваиваться или же поворот ликвидируется?
7.Опишите методику измерений. Как определять концентрацию сахарозы в исследуемом растворе по результатам измерений? Как вычислить погрешность измерений?
1. Савельев И.В. Курс общей физики (т.3). М.: Наука, СПб.: Лань, 2006.
2. Трофимова Т.И. Курс физики. М.: Высш. Шк., 2004.
3. Федосеев В. Б. Физика,- Ростов н/Д: Феникс, 2009
№ | I | φ1 | φ2 | B | ΔB | |||||
— | A | град | град | град | Тл | Тл | ||||
1,0 | ||||||||||
ср | ||||||||||
1,5 | ||||||||||
ср | ||||||||||
2,0 | ||||||||||
ср | ||||||||||
2,5 | ||||||||||
ср | ||||||||||
3,0 | ||||||||||
ср | ||||||||||
3,5 | ||||||||||
ср | ||||||||||
4,0 | ||||||||||
ср | ||||||||||
4,5 | ||||||||||
ср |
Составители: Т.П. Жданова, В.В. Илясов, А.П. Кудря, А.Б.Гордеева
МАГНИТНОЕ ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ (ЭФФЕКТ ФАРАДЕЯ):
Методические указания к лабораторной работе №17 по физике
Редактор А. А. Литвинова
Объем Офсет. Формат
Бумага тип № Заказ № Тираж Цена
Издательский центр ДГТУ
Адрес университета и полиграфического предприятия:
Вращение плоскости поляризации
Естественное вращение
Естественное вращение. Некоторые вещества, называемые оптически активными, обладают способностью вызывать вращение плоскости поляризации проходящего через них плоскополяризованного света. К числу таких веществ принадлежат кристаллические тела (например, кварц, киноварь), чистые жидкости (скипидар, никотин) и растворы оптически активных веществ в неактивных растворителях (водные растворы сахара, винной кислоты и др.).
Кристаллические вещества сильнее всего вращают плоскость поляризации в случае, когда свет распространяется вдоль оптической оси кристалла. Угол поворота φ пропорционален пути l, пройденному лучом в кристалле:
Коэффициент α называют постоянной вращения. Эта постоянная зависит от длины волны (дисперсия вращательной способности).
В растворах угол поворота плоскости поляризации пропорционален пути света в растворе l и концентрации активного вещества c:
Рис. 6.12. Молекулы правовращающих и левовращающих оптически активных веществ
В зависимости от направления вращения плоскости поляризации оптически активные вещества подразделяются на право- и левовращающие. Направление вращения (относительно луча) не зависит от направления луча. Поэтому, если луч, прошедший через оптически активный кристалл вдоль оптической оси, отразить зеркалом и заставить пройти через кристалл еще раз в обратном направлении, то восстанавливается первоначальное положение плоскости поляризации.
Если между двумя скрещивающимися поляризаторами поместить оптически активное вещество (кристалл кварца, прозрачную кювету с раствором сахара и т. п.), то поле зрения просветляется. Чтобы снова получить темноту, нужно повернуть один из поляризаторов на угол φ, определяемый выражением (15) или (16). В случае раствора, зная удельную постоянную вращения [α] данного вещества и длину l, можно, измерив угол поворота φ, определить по формуле (16) концентрацию раствора с. Такой способ определения концентрации применяется в производстве различных веществ, в частности в сахароварении (соответствующий прибор называется сахариметром).
Магнитное вращение плоскости поляризации
Магнитное вращение плоскости поляризации. Оптически неактивные вещества приобретают способность вращать плоскость поляризации под действием магнитного поля. Это явление было обнаружено Фарадеем и поэтому называется иногда эффектом Фарадея. Оно наблюдается только при распространении света вдоль направления намагниченности. Поэтому для наблюдения эффекта Фарадея в полюсных наконечниках электромагнита просверливают отверстия, через которые пропускается световой луч. Исследуемое вещество помещается между полюсами электромагнита.
Угол поворота плоскости поляризации φ пропорционален пути l, проходимому светом в веществе, и намагниченности вещества. Намагниченность в свою очередь пропорциональна напряженности магнитного поля H. Поэтому можно написать,
Коэффициент V называется постоянной Верде или удельным магнитным вращением. Постоянная V, как и постоянная вращения α, зависят от длины волны.
Магнитное вращение плоскости поляризации
Направление вращения определяется направлением магнитного поля. От направления луча знак вращения не зависит. Поэтому, если, отразив луч зеркалом, заставить его пройти через намагниченное вещество еще раз в обратном направлении, поворот плоскости поляризации удвоится.
Магнитное вращение плоскости поляризации обусловлено возникающей под действием магнитного поля прецессией электронных орбит.
Оптически активные вещества под действием магнитного поля приобретают дополнительную способность вращать плоскость поляризации, которая складывается с их естественной способностью.