движение тел в поле тяготения
1.3.1 Движение в поле тяготения Земли.
Из закона всемирного тяготения следует, что у поверхности Земли все тела должны падать с одинаковым ускорением. В самом деле, по второму закону Ньютона ускорение, приобретаемое телом с массой m у поверхности Землиa=F/m, гдеF — сила, с которой тело притягивается земным шаром. По закону тяготения
, (1.44)
M3— масса Земли и R3— радиус земного шара. Отсюда
и не зависит от массы падающего тела. Таким образом, все тела у поверхности Земли независимо от их массы падают с одинаковым ускорением
, (1.45)
1.3.2 Космические скорости.
Определим скорость, которую необходимо иметь телу дли того, чтобы оно могло стать спутником Земли, т. е. первую космическую скорость. Величину этой скорости можно определить из условия равенства сил, действующих на тело при его вращении вокруг Земли. Сила притяжения должна быть уравновешена центробежной силой mv 2 /R. Таким образом,
(1.46)
откуда находим значение первой космической скорости
Подставляя численные значения величин, получаемv1 = 8 км/с.
Вторая космическая скорость — это скорость, которую нужно сообщить телу для того, чтобы оно покинуло область земного притяжения. Для определения второй космической скорости следует вычислить работу, которую необходимо совершить против сил земного притяжения для удаления тела с поверхности Земли на бесконечность. Эта работа равна разности потенциальных энергий тела в начальном и в конечном положениях:
Потенциальная энергия тела в гравитационном поде Земли на ее поверхности согласно (1.41) имеет вид:
а на бесконечности равна нулю. Таким образом,
(1.47)
Величина этой потенциальной энергии определяет кинетическую энергию, которую должно иметь тело для того, чтобы быть в состоянии совершить указанную работу
Отсюда вторая космическая скорость определяется выражением:
.
Ее численное значение приблизительно 11 км/с. Пусть перемещение происходит вдоль оси Z. При этом сила тяжести совершает работу
.
Согласно определению потенциальной энергии А = U1‑U2. Отсюда следует, что потенциальная энергия тела в поле силы тяжести Земли может быть записана в виде
где постоянная связана с выбором начала отсчета энергии. Эту формулу можно получить и непосредственно из закона всемирного тяготения. Запишем его в виде
,
где z— высота тела с массойm над поверхностью Земли. При малых
,
, откуда находимU =U0 +mgz =U(R3) +mgz
1.4. Силы инерции
Основным положением механики Ньютона является утверждение о том, что действие на тело со стороны других тел вызывает их ускорение. В системах координат, движущихся с ускорением относительно выбранной нами инерциальной системы, так называемых неинерциальных системах, формально справедливо и обратное — возникают силы, связанные не с реальным действием других тел, а с наличием указанных ускорений. Такие силы называют силами инерции. Рассмотрим несколько примеров.
1. Прямолинейное движение системы координат с ускорением a0 относительно инерциальной системы. В этом случае на тело с массойm в неинерциальной системе координат действует сила инерции, равная
2. Центробежная сила инерции. Рассмотрим движение тела во вращающейся системе координат. Сначала рассмотрим вращение тела в неподвижной системе. В ней тело будет испытывать центростремительное ускорение, которое, и будет заставлять его вращаться. По третьему закону Ньютона центростремительной силе соответствует центробежная сила, приложенная к нити, удерживающей вращающееся тело. Во вращающейся системе координат тело покоится, но центростремительное ускорение по-прежнему отлично от нуля. Это ускорение может быть связано теперь с существованием центробежной силы , направленной от центра вращения.
3. Свободно падающий лифт. Пусть ускорение свободно падающего лифта — неинерциальной системы отсчета — g. Сила инерции, действующая на материальную точку с массойm, в системе отсчета, связанной с лифтом, равнаmg. На тело в падающем лифте действуют, таким образом, две силы: — сила тяжести и сила инерции. Суммарная сила, действующая в свободно падающем лифте на материальную точку, равна нулю, т. е. сила инерции уравновешивает силу тяготения — в лифте возникает состояние невесомости. Аналогия между поведением тел в гравитационном поле и в неинерциальной системе отсчета составляет принцип эквивалентности сил тяготения и инерции: он используется в теории тяготения, основанной на теории относительности. В основе принципа эквивалентности лежит равенство инертной и гравитационной масс, о котором шла речь в начале данной главы.
Закон всемирного тяготения. Движение тел под действием силы тяжести
По второму закону Ньютона причиной изменения движения, т. е. причиной ускорения тел, является сила. В механике рассматриваются силы различной физической природы. Многие механические явления и процессы определяются действием сил тяготения.
Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 году. Еще в 1665 году 23-летний Ньютон высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс (рис. 1.10.1). Понятие центра масс тела будет строго определено в 1.23.
У однородного шара центр масс совпадает с центром шара.
Гравитационные силы притяжения между телами.
В последующие годы Ньютон пытался найти физическое объяснение законам движения планет, открытых астрономом Иоганном Кеплером в начале XVII века, и дать количественное выражение для гравитационных сил. Зная как движутся планеты, Ньютон хотел определить, какие силы на них действуют. Такой путь носит название обратной задачи механики. Если основной задачей механики является определение координат тела известной массы и его скорости в любой момент времени по известным силам, действующим на тело, и заданным начальным условиям (прямая задача механики), то при решении обратной задачи необходимо определить действующие на тело силы, если известно, как оно движется. Решение этой задачи и привело Ньютона к открытию закона всемирного тяготения.
Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:
Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной
Многие явления в природе объясняются действием сил всемирного тяготения. Движение планет в Солнечной системе, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все они находят объяснение на основе закона всемирного тяготения и законов динамики.
Одним из проявлений силы всемирного тяготения является сила тяжести. Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна
где g – ускорение свободного падения у поверхности Земли:
Сила тяжести направлена к центру Земли. В отсутствие других сил тело свободно падает на Землю с ускорением свободного падения.
При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Рис. 1.10.2 иллюстрирует изменение силы тяготения, действующей на космонавта в космическом корабле при его удалении от Земли. Сила, с которой космонавт весом 71,5 кг (Гагарин) притягивается к Земле вблизи ее поверхности равна 700 Н.
Изменение силы тяготения, действующей на космонавта при удалении от Земли
Примером системы двух взаимодействующих тел может служить система Земля–Луна. Луна находится от Земли на расстоянии rЛ = 3,84·10 6 м. Это расстояние приблизительно в 60 раз превышает радиус Земли RЗ. Следовательно, ускорение свободного падения aЛ, обусловленное земным притяжением, на орбите Луны составляет
С таким ускорением, направленным к центру Земли, Луна движется по орбите. Следовательно, это ускорение является центростремительным ускорением. Его можно рассчитать по кинематической формуле для центростремительного ускорения:
где T = 27,3 сут – период обращения Луны вокруг Земли. Совпадение результатов расчетов, выполненных разными способами, подтверждает предположение Ньютона о единой природе силы, удерживающей Луну на орбите, и силы тяжести.
Собственное гравитационное поле Луны определяет ускорение свободного падения gЛ на ее поверхности. Масса Луны в 81 раз меньше массы Земли, а ее радиус приблизительно в 3,7 раза меньше радиуса Земли. Поэтому ускорение gЛ определится выражением:
В условиях такой слабой гравитации оказались космонавты, высадившиеся на Луне. Человек в таких условиях может совершать гигантские прыжки. Например, если человек в земных условиях подпрыгивает на высоту 1 м, то на Луне он мог бы подпрыгнуть на высоту более 6 м.
Рассмотрим теперь вопрос об искусственных спутниках Земли. Искусственные спутники движутся за пределами земной атмосферы, и на них действуют только силы тяготения со стороны Земли. В зависимости от начальной скорости траектория космического тела может быть различной. Мы рассмотрим здесь только случай движения искусственного спутника по круговой околоземной орбите. Такие спутники летают на высотах порядка 200–300 км, и можно приближенно принять расстояние до центра Земли равным ее радиусу RЗ. Тогда центростремительное ускорение спутника, сообщаемое ему силами тяготения, приблизительно равно ускорению свободного падения g. Обозначим скорость спутника на околоземной орбите через υ1. Эту скорость называют первой космической скоростью. Используя кинематическую формулу для центростремительного ускорения, получим:
Двигаясь с такой скоростью, спутник облетал бы Землю за время
На самом деле период обращения спутника по круговой орбите вблизи поверхности Земли несколько превышает указанное значение из-за отличия между радиусом реальной орбиты и радиусом Земли.
Движение спутника можно рассматривать как свободное падение, подобное движению снарядов или баллистических ракет. Различие заключается только в том, что скорость спутника настолько велика, что радиус кривизны его траектории равен радиусу Земли.
Для спутников, движущихся по круговым траекториям на значительном удалении от Земли, земное притяжение ослабевает обратно пропорционально квадрату радиуса r траектории. Скорость спутника υ находится из условия
Таким образом, на высоких орбитах скорость движения спутников меньше, чем на околоземной орбите.
Период T обращения такого спутника равен
Здесь T1 – период обращения спутника на околоземной орбите. Период обращения спутника растет с увеличением радиуса орбиты. Нетрудно подсчитать, что при радиусе r орбиты, равном приблизительно 6,6 RЗ, период обращения спутника окажется равным 24 часам. Спутник с таким периодом обращения, запущенный в плоскости экватора, будет неподвижно висеть над некоторой точкой земной поверхности. Такие спутники используются в системах космической радиосвязи. Орбита с радиусом r = 6,6 RЗ называется геостационарной.
Движение тел в поле тяготения
Рассмотрим некоторые примеры движения тел, когда единственная действующая на тело сила — это сила тяготения. В случаях, когда речь идет о движении брошенного камня или снаряда, выпущенного из пушки, поле тяготения Земли в пределах траектории можно считать однородным. При этом действующая на тело сила всюду одинакова и в соответствии со вторым законом Ньютона движение происходит с постоянным ускорением Фактически это соответствует приближению «плоской Земли», когда вектор ускорения всюду направлен одинаково, вертикально вниз, а его модуль
принимается равным значению
напряженности гравитационного поля вблизи поверхности Земли. Такое движение было подробно изучено ранее в главе, посвященной кинематике. Напомним, что траектория в этом случае представляет собой параболу с вертикальной осью симметрии.
Приближение «плоской Земли» справедливо лишь при сравнительно небольших скоростях, пока перемещение тела мало по сравнению с радиусом Земли. В противном случае необходимо учитывать изменение вектора напряженности гравитационного поля либо по модулю (при движении в радиальном направлении), либо по направлению (при движении вдоль поверхности шарообразной Земли), либо то и другое вместе.
Выясним сначала, возможно ли свободное движение тела параллельно земной поверхности. Очевидно, что в приближении «плоской Земли» это невозможно, так как параболическая траектория непременно пересечет плоскую поверхность Земли. Если же принять во внимание кривизну земной поверхности, то при некотором (достаточно большом) значении горизонтальной скорости движение вдоль поверхности становится возможным.
Рис. 94. Движение по низкой круговой орбите
Первая космическая скорость. В этом случае траектория тела представляет собой окружность, стелющуюся параллельно земной поверхности (рис. 94), а соответствующая скорость движения тела называется первой космической скоростью
Ее значение легко найти из условия, что в рассматриваемом случае в соответствии со вторым законом Ньютона центростремительное ускорение
телу сообщает сила тяжести
Приведенное значение первой космической скорости получается при подстановке в формулу значения ускорения свободного падения и радиуса Земли
км.
В действительности такое движение, разумеется, невозможно из-за сопротивления воздуха. Движение спутника Земли по круговой орбите возможно только тогда, когда орбита пролегает выше атмосферы. Самые низкие круговые орбиты спутников проходят на высоте более 100 км.
Круговая скорость. Скорость на такой круговой орбите радиуса называется круговой, и ее значение зависит от высоты
орбиты над поверхностью Земли. Для ее определения в правую часть уравнения второго закона Ньютона (1) следует вместо
подставить значение силы тяготения на расстоянии
от центра Земли:
Формуле (4) можно придать другой, несколько более удобный вид, если выразить через ускорение свободного падения
поверхности Земли:
Тогда
С увеличением высоты орбиты круговая скорость уменьшается. Для высот , малых по сравнению с радиусом Земли
выражение для
можно упростить, используя приближенную формулу
В этом случае из (5) получаем
Из (6) видно, что для круговой орбиты на высоте, например, 200 км скорость меньше первой космической приблизительно на 1/64 ее часть, т. е. на 124 м/с.
Задачи
1. Расстояние до Луны. Звездный месяц, т. е. период Т обращения Луны вокруг Земли в гелиоцентрической системе отсчета, равен 27,32 суток. Зная радиус Земли км и ускорение свободного падения у ее поверхности
найдите расстояние
до Луны.
Решение. Считая, что Луна движется вокруг Земли по круговой орбите радиуса и применяя второй закон Ньютона к ее движению под действием силы притяжения к Земле, получаем, аналогично (5), для скорости Луны
Скорость связана с радиусом
орбиты Луны и периодом обращения Т соотношением
Подставляя ил в (7), находим
2. Плотность солнечного вещества. Зная радиус Солнца км, радиус земной орбиты
км и период обращения Земли вокруг Солнца
год, найдите среднюю плотность солнечного вещества. Найдите также минимально возможный период обращения спутника Солнца.
Решение. Применяя второй закон Ньютона к движению Земли по круговой орбите вокруг Солнца, аналогично (4) получаем
где — масса Солнца. Подставляя сюда значение скорости
для массы Солнца находим
Отсюда для средней плотности солнечного вещества получаем
Минимальный период обращения был бы у спутника Солнца, обращающегося по орбите, стелющейся над его поверхностью, так как именно у такого спутника длина орбиты наименьшая, а скорость наибольшая. Это ясно и непосредственно из третьего закона Кеплера. Искомый минимальный период можно выразить через среднюю плотность солнечного вещества прямо из формулы (9), положив в ней
что составляет менее трех часов. Обратим внимание на то, что период обращения спутника по стелющейся орбите зависит только от средней плотности вещества, из которого состоит центральное притягивающее тело, и не зависит от его размеров.
Кеплерово движение. Круговое движение под действием ньютоновской силы притяжения представляет собой частный случай так называемого кеплерова движения, описываемого законами Кеплера. Чтобы спутник, поднятый на некоторую высоту, двигался по круговой орбите, ему нужно сообщить вполне определенную горизонтальную скорость. Если в какой-либо точке сообщить спутнику горизонтальную скорость, несколько большую круговой, он будет двигаться по эллиптической орбите, у которой данная точка будет перигеем, т. е. ближайшей к Земле точкой орбиты, а наиболее удаленная точка — апогей — будет лежать на противоположном конце прямой, проведенной из перигея через фокус эллипса, в котором находится центр Земли (рис. 95).
Рис. 95. Круговая и эллиптические орбиты при разных значениях начальной скорости
Рис. 96. Эллиптическая орбита в случае начальной скорости, меньшей круговой
Перигей и апогей находятся на противоположных концах большой оси эллипса.
Если же спутнику сообщить горизонтальную скорость, меньшую круговой, то он будет двигаться по эллиптической орбите, у которой начальная точка будет не перигеем, а апогеем, и, следовательно, центр Земли будет расположен в дальнем от нее фокусе эллипса (рис. 96). Периодическое движение по такой орбите возможно, разумеется, лишь тогда, когда она не пересекает поверхности Земли.
Существование замкнутых орбит — это замечательная особенность поля, в котором сила изменяется по закону обратных квадратов. Закономерности движения по эллиптическим орбитам будут подробнее рассмотрены после изучения законов сохранения.
Кроме замкнутых орбит в ньютоновском поле тяготения возможно движение по незамкнутым орбитам, когда тело приближается из бесконечности и, изменив направление движения под действием силы тяготения, снова уходит в бесконечность. Траектория в этом случае представляет собой гиперболу. Траектория, отделяющая замкнутые орбиты от незамкнутых, представляет собой параболу (эта парабола не имеет никакого отношения к параболе, по которой движется брошенное тело в приближении «плоской Земли»),
Конические сечения. Любое движение в поле тяготения как по замкнутым, так и по незамкнутым траекториям происходит по одному из так называемых конических сечений — кривых, которые получаются при пересечении кругового конуса с плоскостью (рис. 97).
Рис. 97. Конические сечения
В зависимости от наклона плоскости к оси конуса могут получиться окружность, эллипс, парабола и гипербола.
Незамкнутые траектории возможны не только тогда, когда тело приходит из бесконечности, но и тогда, когда ему сообщают достаточно большую начальную скорость в точке, находящейся на конечном расстоянии. Этот вопрос будет рассмотрен подробнее после изучения законов сохранения.
Сила тяжести внутри Земли. Закон обратных квадратов справедлив для поля тяготения, создаваемого точечной массой или шарообразным телом вне его пределов. Внутри шара поле тяготения будет совсем другим. Каким же именно? Будем, например, считать, что Земля представляет собой сплошной однородный шар. Выясним, как действующая на пробное тело сила тяжести зависит от его положения в стволе воображаемой шахты, прорытой от поверхности до центра Земли.
Очевидно, что в центре Земли эта сила равна нулю. Это непосредственно следует из симметрии: если бы сила вдруг оказалась
там отлична от нуля, то куда бы она была направлена? Ведь ни одному из направлений нельзя отдать предпочтение. Чтобы найти силу тяжести в произвольной точке на некотором расстоянии от центра Земли
разобьем мысленно земной шар на тонкие сферические концентрические слои вокруг центра Земли (рис. 98). Согласно принципу суперпозиции полная сила тяжести, действующая на пробное тело на расстоянии
от центра, равна векторной сумме сил, действующих на него со стороны отдельных концентрических слоев.
Рис. 98. К расчету силы тяготения на расстоянии от центра Земли
Легко убедиться в том, что сила тяготения, действующая со стороны любого слоя на тело, находящееся внутри этого слоя, равна нулю. Это сразу видно из построения, показанного на рис. 98. Малые части сферической оболочки с массами притягивают пробное тело массы
с силами, пропорциональными этим массам и обратно пропорциональными квадратам расстояний
Но сами массы
как видно из рисунка, пропорциональны квадратам соответствующих расстояний. Действительно, показанные на этом рисунке треугольники подобны, а площади участков оболочки с массами
пропорциональны квадратам их линейных размеров. В результате силы тяготения, действующие со стороны выделенных участков сферического слоя, уравновешиваются, что и доказывает сделанное утверждение, так как вся оболочка может быть разбита на такие пары элементов.
Подобными рассуждениями отсутствие силы тяготения внутри сферической оболочки было установлено еще Ньютоном.
Таким образом, на тело в стволе шахты в точке А (рис. 99) действует сила тяжести только со стороны заштрихованного шара, на поверхности которого находится это тело. Так как масса однородного заштрихованного шара пропорциональна кубу его радиуса а сила тяготения пропорциональна массе и в то же время обратно пропорциональна квадрату радиуса, то эта сила в конечном счете оказывается просто пропорциональна радиусу шара:
. Коэффициент пропорциональности проще всего найти, учитывая, что на поверхности Земли, когда
сила тяжести равна
. На произвольном расстоянии
от центра при
очевидно,
Так как при сила тяжести убывает обратно пропорционально квадрату расстояния, график зависимости силы тяжести
имеет вид, показанный на рис. 100.
Совсем иной характер зависимости силы тяготения от внутри Земли означает, что при движении тела со скоростью, меньшей круговой, движение по пересекающей Землю эллиптической траектории с дальним фокусом в центре Земли невозможно, даже если прорыть туннель вдоль этой траектории и выкачать из него воздух.
Рис. 99. Сила тяготения в точке А обусловлена действием только заштрихованной части земного шара
Рис. 100. Зависимость силы тяготения от расстояния до центра Земли
• Современные астрономические средства наблюдений позволяют измерить скорость разных участков кольца планеты Сатурн. Можно ли из таких наблюдений установить, является ли кольцо сплошным?
• Почему из наблюдений за движением планеты под действием силы притяжения к Солнцу невозможно определить ее массу? Как найти массу планеты по наблюдениям за ее спутниками?
• Когда телу над Землей сообщена горизонтальная скорость, меньшая круговой, то, как было сказано, оно движется по траектории, представляющей собой часть эллипса с дальним фокусом в центре Земли. Как согласовать этот факт с известным утверждением, что брошенное горизонтально тело движется в поле тяжести Земли по параболе?
• Может ли прилетевший из бесконечности метеор, не задевший земной атмосферы, стать спутником Земли?
• Как стало бы двигаться тело, которое уронили в воображаемый туннель, прорытый по диаметру Земли?
• Решите задачу 1, учитывая, что в действительности Земля и Луна обращаются вокруг их общего центра масс.