Что значит упростить выражение с дробями и буквами
Упрощение выражений
Одно из самых распространенных заданий в алгебре звучит так: «Упростите выражение». Сделать это можно используя один из ниже перечисленных приемов, но чаще всего тебе потребуется их комбинация.
Приведение подобных слагаемых.
Для примера упростим такое выражение:
Подобные слагаемые я выделю разными цветами и посчитаю. Кстати, знак перед слагаемым относится к этому слагаемому.
Как видишь, больше одинаковых буквенных частей нет. Выражение упрощено.
Умножение одночленов и многочленов.
При умножении одночленов используют правила умножения степеней.
Перемножим три одночлена:
Разными цветами выделю то, что буду последовательно перемножать.
Чтобы умножить одночлен на многочлен выражение за скобками умножить на каждое слагаемое в скобках. Подробности в следующем примере.
Осталось вспомнить умножение многочлена на многочлен. При таком вот умножении надо каждое слагаемое в первых скобках умножить на каждое слагаемое во вторых скобках, результаты сложить или вычесть в зависимости от знаков слагаемых.
Вынесение общего множителя за скобки.
Разбираться будем на примере.
Дано такое выражение:
Что общего у этих двух слагаемых? Правильно, в них обоих присутствует множитель x. Он и будет являться общим множителем, который надо вынести за скобку.
Возьмем другой пример.
Ну и давайте третий пример, только уже без комментариев.
Проверить правильность вынесения общего множителя за скобки можно путем раскрытия скобок (умножением).
Разложение многочлена на множители способом группировки.
Если надо разложить многочлен на множители, то способ группировки тебе пригодится.
Сгруппировать выражения можно лишь путем вынесения общих множителей за скобку. Но сделать это нужно так, чтобы скобки в итоге получились одинаковые. Зачем? Да затем, чтобы потом эти скобки вынести за другие скобки.
На примере будет яснее)
Беру пример самый простой, чисто для понимания того, что надо делать.
В первых двух слагаемых общим множителем является переменная а: выносим ее за скобку. Во вторых двух слагаемых общим множителем является число 6. Его тоже выносим за скобки.
Видишь получились две одинаковые скобки? Теперь они являются общим множителем. Выносим их за скобку и получаем милое произведение двух скобок:
Разложение квадратного трехчлена на множители.
Пусть дан квадратный трехчлен:
Чтобы разложить его на множители надо решить квадратное уравнение
Далее корни уравнения х1 и х2 подставить в следующую формулу:
Возьмем вот такой трехчлен:
Найдем корни квадратного уравнения.
Подставим их в формулу для разложения квадратного трехчлена на множители:
Что-то слишком много минусов во второй скобке. Чуть-чуть преобразуем ее:
Еще могут тебе пригодится:
— умение сокращать дроби;
А вот такие задания могут тебе встретится на экзамене.
2) Найти значение выражения при заданных значениях переменных:
3) Найти значение выражения при заданных значениях переменных:
Общие сведения
Принцип решения любой математической задачи основан на получении оптимального ответа, который в дальнейшем возможно будет применить для других целей (доказательства теорем, тождеств, получения промежуточных величин). Оптимизация результата состоит из операций, имеющих собственный приоритет. Последний соответствует порядковому номеру элемента в списке:
В первом случае компоненты выражения группируются посредством скобок. В математике принято использовать только круглые, т. е. «()». Однако допускаются квадратные «[]», но некоторые начинающие математики иногда группируют элементы выражения при помощи фигурных скобок «<>». Это делать не рекомендуется, поскольку последние обозначают в дисциплинах с физико-математическим уклоном общее решение.
Иногда новички не знают, что возведение в степень и извлечение корня являются двумя эквивалентными операциями. Это утверждение легко доказывается. Например, квадратный корень из 36 эквивалентен 6. Знак радикала можно заменить степенью, имеющей вид обыкновенной или десятичной дроби, т. е. (36)^(½)=√36=6.
Произведение не всегда обладает высшим приоритетом, чем деление. Для удобства вычислений можно сначала разделить, а затем умножить. Например, требуется найти значение выражения «3*81:9». Его можно решить, основываясь на приоритетах или удобстве вычислений (оптимизации). Для сравнения расчетов нужно решить равенство двумя способами:
При решении получены одинаковые результаты. Следует отметить, что простой метод — второй. Операции сложения и вычитания имеют одинаковый приоритет. Упростить выражение — означает, что необходимо преобразовать его из сложной формы представления в простую. Иными словами, операция называется оптимизацией результата.
Оптимизация выражений применяется при решении уравнений (равенств с неизвестными величинами) любой сложности и доказательства теорем. Это базовые знания, необходимые для упрощения выражений в 5 классе.
Базовые знания
Для освоения определенного направления в любой дисциплине необходимы определенные знания. Например, невозможно выполнить умножение одного числа на другое, не зная таблицы умножения. Это касается и оптимизации тождеств. Основные элементы теории, которые нужно знать для выполнения операции:
По этим пунктам можно упрощать алгебраические целочисленные и дробные выражения любой сложности. Однако каждый из элементов необходимо разобрать подробно, чтобы не совершать ошибок при расчетах.
Приведение подобных элементов
Практически во всех заданиях нужно складывать общие элементы, полученные при расчетах или раскрытии скобок. Для этой операции необходимо руководствоваться следующими правилами:
В первом случае нужно привести пример тождества следующего вида: 2+5t+4+5t^2+2t-4t^2. Чтобы его упростить, необходимо сгруппировать подобные компоненты, т. е. (2+4)+(5t+2t)+(5t^2-4t^2). Далее следует сложить компоненты между собой, т. е. 6+7t+t^2.
Группу «5t^2-4t^2» можно назвать операцией сложения, хотя на самом деле она называется разностью, которую записывают и в виде суммы: 5t^2+(-4t^2). Раскрывая скобки в последнем тождестве, можно получить упрощенную форму: 5t^2-4t^2. Далее необходимо ознакомиться с правилами раскрытия скобок.
Раскрытие скобок
Операция раскрытия скобок для выполнения дальнейших вычислений очень часто применяется в различных дисциплинах с физико-математическим уклоном. Она осуществляется по следующим правилам:
В первом и втором случаях операции называют вынесением общего множителя за скобки. Последнее правило группировки действует не на все компоненты, т. е невозможно выполнить объединение 2 и 3 элементов (5 и 4) в выражении «4:5+4-1+7». Для доказательства следует решить его двумя способами:
Выражение, решенное первым и вторым способом, имеет различные ответы, поскольку 10,8>6[4/9]. Объяснение этому несоответствию — нарушение логики тождества. Следующим компонентом, составляющим базу для упрощения тождеств, является работа со степенями.
Работа со степенями
В математических тождествах иногда необходимо упростить степенные выражения. Однако большинство математиков-новичков делает много ошибок, поскольку не знают основных правил:
Нулевое значение в такой же степени является пустым множеством, т. е. его не существует. Cтепень может быть представлена в виде обыкновенной или десятичной дроби. В последнем случае для удобства ее необходимо перевести к первому типу. Если указано значение степенного показателя, равное 3/5, нужно величину возвести в куб, а затем изъять корень 5 порядка.
Оптимизация обыкновенных дробей
В последнем случае каждый знаменатель необходимо разложить на множители, затем перемножить между собой все неповторяющиеся компоненты. Следующим элементом, который необходимо для преобразования тождеств, являются формулы сокращенного умножения.
Сокращенное умножение
Для решения задач очень часто применяются формулы сокращенного умножения. В некоторых случаях тождества «собираются» в них или, наоборот, для сокращения нужно расписать элементы по множителям (правая часть равенства). Соотношения имеют следующий вид:
Cледует отметить, что в некоторых случаях к формуле сокращенного умножения тождество следует «подвести», воспользовавшись свойством отнимания и прибавления одного и того же значения. Например, необходимо из некоторого выражения (2t^2-60) выделить одну из формул. Это делается следующим образом:
Иногда в более сложных выражениях приходится применять несколько соотношений. Если тождество является дробью, обязательно следует проверить условие неравенства знаменателя нулевой величине. Для этой цели следует решить соответствующее уравнение, вычислив его корни. Последние должны привести к пустому множеству, т. к. на 0 делить нельзя. Вот именно их и необходимо исключить, записав условие, т. е. t!=-9.
Таким образом, для грамотной оптимизации математических выражений необходимо пользоваться рекомендациями специалистов, правилами и методиками, поскольку их несоблюдение могут существенно повлиять на результаты вычислений.
Упрощения алгебраических выражений
Что значит упростить алгебраическое выражение
Алгебраическое выражение — одна или несколько алгебраических величин (чисел и переменных), которые объединены с помощью знаков арифметических действий в виде сложения, вычитания, умножения, деления, извлечения корня, возведения в степень (при целых значениях показателей корня и степени), знаков последовательности, определяющих порядок применения данных операций (скобки разного вида).
Обязательным условием для алгебраического выражения является конечное число величин, которые его составляют. Данный принцип пригодиться математикам для решения задач в средних классах школы.
Упростить выражение — это значит уменьшить число арифметических действий, необходимых для вычисления значения данного выражения с учетом определенных значений переменных.
Правила упрощения алгебраических выражений
Существуют основные методы в алгебре для того, чтобы упростить алгебраическое выражение:
В процессе приведения выражения в более простую форму следует использовать полезные советы:
Приведение подобных
Приведение подобных слагаемых в теории заключается в сложении их коэффициентов и приписывании буквенной части.
Подобными являются слагаемые (одночлены), которые обладают буквенной частью.
В выражении 2ab+3ab+b одночлены 2ab и 3ab являются подобными слагаемыми.
Привести подобные — значит, выполнить сложение нескольких подобных слагаемых для получения в результате одного слагаемого.
К примеру, приведем слагаемые:
Заметим, что числа в таких слагаемых умножают на буквы. Данные числа носят названия коэффициентов.
Рассмотрим выражение с квадратной степенью:
Здесь число 3 является коэффициентом.
Разложение на множители
Разложить выражение на множители можно, если вынести общий множитель за скобки, применить формулы сокращенного умножения и другие.
a b 2 + a 2 c = a b 2 + a c
В распространенных случаях разложение на множители следует за приведением подобных при упрощении выражений. В итоге получаются произведения. Чтобы это понять, отдельно нужно упомянуть правила действия с дробями, а именно, при сокращении дроби числитель и знаменатель требуется записать, как произведения.
Сокращение дроби
В процессе сокращения дроби допустимо выполнять умножение или деление числителя и знаменателя дроби на одинаковое число, отличное от нуля, в результате чего величина дроби остается прежней.
Объяснение алгоритм действий при сокращении дробей:
a a + b a 2 = a a + b a · a = a + b a
Важно заметить, что сокращению подлежат исключительно множители.
Озвученное правило является следствием ключевого свойства дроби. Оно состоит в допустимости умножения или деления числителя и знаменателя дроби на одно и то же число, которое не равно нулю. В результате значение дроби останется без изменений.
Существует простой способ, руководствуясь которым можно определить, разложено ли выражение на множители. Арифметическое действие, выполняемое в последнюю очередь при вычислении значения выражения, считается «главным».
Данное правило состоит в том, что, когда при подстановке каких-либо чисел на замену буквам и вычислении значения выражения последнее действие представляет собой умножение, можно заключить, что перед нами произведение, то есть выражение разложено на множители. В том случае, когда на последнем шаге в процессе расчетов выполняется сложение или вычитание, разложение выражения на множители не выполнено, то есть сокращение не допускается.
Сложение и вычитание дробей
При сложении и вычитании обыкновенных дробей требуется найти общий знаменатель, умножить каждую из дробей на недостающий множитель и сложить или вычесть числители:
a b + c d = a · d + c · b b · d ;
Разберем правило на конкретных примерах. Вычислим:
Заметим, что знаменатели являются взаимно простыми, то есть не имеют общих множителей. Таким образом, наименьший общий множитель данных чисел соответствует их произведению. В результате:
В данном случае общим множителем является число 24. Выполним преобразования и упростим выражение:
В данном примере следует смешанные дроби записать в виде неправильных. Далее можно упростить выражение по стандартному алгоритму:
Разберем самостоятельный случай, когда знаменатели не содержат буквы. При этом алгоритм действий такой же, как и при действиях с обыкновенными дробями:
Здесь общий множитель равен 12. Тогда:
a 2 b · 3 4 + a · 2 6 = 3 a 2 b + 2 a 12
Далее можно привести подобные в числители, и разложить на множители при их наличии:
a 2 b 4 + a 6 = 3 a 2 b + 2 a 12 = a 3 a b + 2 12
Когда знаменатели содержат буквы, схема действий существенно не меняется:
Рассмотрим пример, когда требуется упростить выражение:
Разложим знаменатели на множители:
a b 2 = a · b · b a 2 b = a · a · b
Вычислим единые множители:
a b 2 = a ¯ · b ¯ ¯ · b a 2 b = a ¯ · a · b ¯ ¯
Затем можно записать общие множители и выполнить умножение:
a ¯ · b ¯ ¯ · a · b = a 2 b 2
1 a b 2 · a + 1 a 2 b · b = a + b a 2 b 2
Умножение и деление дробей
Умножение и деление дробей выполняют таким образом:
a b · c d = a · c b · d ;
a b : c d = a · d b · c
Арифметические действия выполняют в следующем порядке:
Важно заметить, что при наличии скобок, операции, которые в них заключены, необходимо выполнить в первую очередь. Далее можно приступать к раскрытию скобок. Когда имеется несколько скобок с арифметическими действиями, которые нужно умножить или разделить, в начале проводят вычисления в каждой из скобок, а затем умножение или деление полученных результатов. При наличии внутренних скобок, заключенных в скобки, действия в них выполняют в первую очередь.
Используя правило умножения и деления дробей, получим:
Во многих примерах имеются не только цифры, но и буквы. В этом случае выполняются алгебраические действия, в том числе, приведение подобных, сложение, сокращение дробей и другие операции. Отличия можно заметить при разложении многочленов на множители. Для этого следует пользоваться формулами сокращенного умножения или вынесением единого множителя за скобки.
Ключевой задачей при работе с такими выражениями является запись выражений в виде произведения или частного.
Попробуем упростить выражение:
Так как имеются скобки, следует начать преобразования именно с них. Упростим разность дробей, которая в них записана, чтобы получить вместо нее произведение или частное. Приведем дроби к единому знаменателю и определим сумму:
Заметим, что дальнейшие преобразования не приведут к упрощению данного выражения. Причина этого заключается в том, что каждый из множителей является элементарным. В результате:
Пояснения на примерах
Требуется упростить выражения:
Приведем подобные и упростим выражения:
Заметим, что ab и 2ba являются подобными по той причине, что:
В результате можно сделать вывод, что данные слагаемые обладают одинаковой буквенной частью.
Требуется упростить выражения:
Путем разложения на множители упростим данные выражения:
a b 2 + a 2 c = a b 2 + a c
72 30 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 3 5 = 12 5
a a + b a 2 = a a + b a · a = a + b a
В первую очередь выполним разложение на множители:
Дано выражение, которое требуется упростить:
В данном случае требуется разложить знаменатели на множители. Первый знаменатель записан так, что можно вынести за скобки х. Второй знаменатель содержит разность квадратов. Выполним преобразования:
Рассмотрим выражение на наличие общих множителей:
Заметим, что при переносе слагаемых, заключенных в скобках, изменился знак перед дробью. Приведем выражения к единому знаменателю:
Воспользуемся формулой сокращенного умножения, а именно, разностью кубов:
Заметим, что в знаменателе дроби расположено выражение, которое называют неполным квадратом суммы:
x 2 + 2 x + 4 = x 2 + 2 · x + 2 2
Второе по счету слагаемое в неполном квадрате суммы является произведением первого и последнего. Неполный квадрат суммы представляет собой множитель, который входит в состав разложения разности кубов:
Требуется упростить выражения:
Дано выражение, которое требуется упростить:
При наличии в знаменателях одного и того же множителя, возведенного в разные степени, то в общем знаменателе данный множитель будет обладать самой большой из имеющихся степеней. Применительно к этой задаче, общий знаменатель будет состоять из следующих выражений:
a во второй степени;
x в третьей степени;
b в третьей степени;
y в четвертой степени.
В результате получим:
Нужно упростить выражение:
Исключить ошибки можно, если расписать заранее порядок операций. В первую очередь целесообразно суммировать дроби, расположенные в скобках. В результате будет получена только одна дробь. Далее можно приступить к делению дробей. Полученный итог следует прибавить к последней дроби.
Выглядит этот алгоритм таким образом:
Как упростить выражение (ЕГЭ 2022)
Хочешь узнать, что такое ДОСАДА?
Это когда на ЕГЭ ты увидишь, что знаешь, как решить неравенство, но не сможешь его упростить.
И «проедешь мимо кассы».
Чтобы этого не случилось, нужно освоить преобразование алгебраических выражений.
Приведение подобных, разложение на множители, сокращение, сложение и вычитание, деление и умножение дробей – вот это вот всё…
Кстати, от 30 до 40% ошибок на ЕГЭ – это ошибки именно в подобных простых вещах.
Отнесись к ним серьезно!
Как упростить алгебраическое выражение — коротко о главном
Базовые операции упрощения
Приведение подобных: чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
Разложение на множители: вынесение общего множителя за скобки, применение формул сокращенного умножения и т.д.
Сокращение дроби: числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
1) числитель и знаменатель разложить на множители
2) если в числителе и знаменателе есть общие множители, их можно вычеркнуть.
ВАЖНО: сокращать можно только множители!
Сложение и вычитание дробей:
Умножение и деление дробей:
Как упростить выражение — подробно
Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:
Сейчас я научу тебя не бояться никаких подобных задач.
Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа −1.
Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители. Освежи эти темы, если подзабыл.
Вспомнил? А сейчас разберем основные приемы, которые используются при упрощении выражений.
Самый простой из них – это…
Приведение подобных
Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел.
Подобные – это слагаемые (одночлены) с одинаковой буквенной частью.
Например, в сумме \( \displaystyle 2ab+3ab+b\) подобные слагаемые – это \( \displaystyle 2ab\) и \( \displaystyle 3ab\).
Привести подобные – значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.
А как же нам сложить друг с другом буквы? – спросишь ты.
Это очень легко понять, если представить, что буквы – это какие-то предметы.
Например, буква \( \displaystyle a\) – это стул. Тогда чему равно выражение \( \displaystyle 2a+3a\)?
Два стула плюс три стула, сколько будет? Правильно, \( \displaystyle 5\) стульев: \( \displaystyle 2a+3a=5a\).
А теперь попробуй такое выражение: \( \displaystyle 2a+3b-a+8b+7a\).
Чтобы не запутаться, пусть разные буквы обозначают разны предметы.
Например, \( \displaystyle a\) – это (как обычно) стул, а \( \displaystyle b\) – это стол.
\( \displaystyle 2a+3b-a+8b+7a=2\)стула\( \displaystyle+3\)стола\( \displaystyle-\)стул\( \displaystyle+8\)столов\( \displaystyle +7\)стульев\( \displaystyle=8\)стульев\( \displaystyle +11\)столов\( \displaystyle=8a+11b\)
Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами.
Итак, правило приведения подобных:
Чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
Потренируйтесь приводить подобные на следующих примерах:
Примеры.
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Разложение на множители
Это обычно самая важная часть в упрощении выражений.
После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители, то есть представить в виде произведения.
Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.
Подробно способы разложения выражений на множители ты проходил в теме «Разложение на множители», поэтому здесь тебе остается только вспомнить выученное.
Для этого реши несколько примеров (разложить на множители).
Примеры
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Сокращение дроби
Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?
В этом вся прелесть сокращения.
Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.
Это правило вытекает из основного свойства дроби:
Числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
То есть суть операции сокращения в том, что числитель и знаменатель дроби делим (или умножаем) на одно и то же число (или на одно и то же выражение).
Чтобы сократить дробь, нужно:
Примеры
Принцип, я думаю, понятен?
Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить – это значит поделить числитель и знаменатель на одно и то же число.
Сокращать можно только множители.
Никаких сокращений, если в числителе или знаменателе сумма.
Например: надо упростить \( \displaystyle \frac<<
Некоторые делают так: \( \displaystyle \frac<<
Еще пример: сократить \( \displaystyle \frac<<
«Самые умные» сделают так:
Скажи мне, что здесь неверно? Казалось бы: \( \left( x+y \right)\) – это множитель, значит можно сокращать.
Но нет: \( \displaystyle \left( x+y \right)\) – это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.
Вот другой пример: \( \frac
\( \displaystyle \frac<5\cdot a\cdot c>\) – это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на \( a\), а потом и на \( c\):
Можно и сразу поделить на \( ac\):
Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:
Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным».
То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение – значит, у нас произведение (выражение разложено на множители).
Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).
Для закрепления реши самостоятельно несколько примеров.
Примеры:
Решения:
1. Надеюсь, ты не бросился сразу же сокращать \( <
Первым действием должно быть разложение на множители:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Сложение и вычитание дробей. Приведение дробей к общему знаменателю
Сложение и вычитание обычных дробей – операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители.
Давай вспомним:
3) \( \displaystyle 3\frac<4><7>-1\frac<2><3>\)
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Совсем другое дело, если дроби содержат буквы, например:
Знаменатели не содержат букв
Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:
Теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:
Примеры:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Знаменатели содержат буквы
Давай вспомним принцип нахождения общего знаменателя без букв:
Пример: \( \displaystyle \frac<1><12>+\frac<1><30>\).
Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:
\( \displaystyle 12=2\cdot 2\cdot 3\);
\( \displaystyle 30=2\cdot 3\cdot 5\).
\( \displaystyle 12=\underline<2>\cdot 2\cdot \underline<\underline<3>>\);
\( \displaystyle 30=\underline<2>\cdot \underline<\underline<3>>\cdot 5\).
Подчеркнем общие множители:
Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:
\( \displaystyle \underline<\text<2>>\cdot \underline<\underline<\text<3>>>\cdot \text<2>\cdot \text<5>=60\) – это и есть общий знаменатель.
Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:
Итак, по порядку (и полезная хитрость!):
1) раскладываем знаменатели на множители:
2) определяем общие (одинаковые) множители:
3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:
А вот и полезная хитрость:
Если в разных знаменателях есть один и тот же множитель в разной степени, то в общем знаменателе такой множитель будет в максимальной из этих степеней.
Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:
\( \displaystyle x\) в степени \( \displaystyle 3\)
\( \displaystyle b\) в степени \( \displaystyle 3\)
\( \displaystyle y\) в степени \( \displaystyle 4\).
Усложним задание:
Как сделать у дробей одинаковый знаменатель?
Если ты сейчас бросился вычитать в первой дроби из \( \displaystyle x\) единицу, то ты очень и очень неправ!
Давай вспомним основное свойство дроби:
Числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!
Итак, очередное незыблемое правило:
Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!
Но на что же надо домножить \( \displaystyle x\), чтобы получить \( \displaystyle x+1\)?
Вот на \( \displaystyle \left( x+1 \right)\) и домножай. А \( \displaystyle \left( x+1 \right)\) домножай на \( \displaystyle x\):
Выражения, которые невозможно разложить на множители будем называть «элементарными множителями».
Например, \( \displaystyle x\) – это элементарный множитель. \( \displaystyle \left( x+1 \right)\) – тоже. А вот \( \displaystyle <
Это как в физике: элементарная частица – это неделимая частица, то есть она не состоит ни из каких других частиц.
Например, молекула – это не элементарная частица, так как она состоит из нескольких атомов.
Атом – тоже не элементарная, так как состоит из протонов, нейтронов и электронов.
А вот эти протоны, нейтроны и электроны поделить нельзя. Значит, они – элементарные частицы.
Что скажешь насчет выражения \( \displaystyle <
Нет, поскольку его можно разложить на множители: \( \displaystyle <
(О разложении на множители ты уже читал в теме «Разложение на множители»).
Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами – это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.
Решим несколько примеров
Пример №1:
Видим, что в обоих знаменателях есть множитель \( \displaystyle \left( x-1 \right)\). Он пойдет в общий знаменатель в степени \( \displaystyle 2\) (помнишь, почему?).
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №2
Прежже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют формулы сокращенного умножения:
\( \displaystyle <
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №3
Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки \( \displaystyle x\); во втором – разность квадратов:
Казалось бы, общих множителей нет. Но если присмотреться, то \( \displaystyle \left( y-2x \right)\) и \( \displaystyle \left( 2x-y \right)\) так похожи… И правда:
\( \displaystyle \left( y-2x \right)=-\left( 2x-y \right)\).
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример № 4
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №5
Пример №6
Тут надо вспомнить еще одну формулу сокращенного умножения – разность кубов:
Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: \( \displaystyle <<\left( x+2 \right)>^<2>>=<
А \( \displaystyle <
Неполный квадрат суммы – это один из множителей в разложении разности кубов:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Что делать, если дробей аж три штуки?
Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:
Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.
В общий знаменатель выписываем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
9) \( \displaystyle 2-\frac<1><<^<2>>-1>-\frac\).
Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?
Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь – это операция деления (числитель делится на знаменатель, если ты вдруг забыл).
И нет ничего проще, чем разделить число на \( \displaystyle 1\). При этом само число не изменится, но превратится в дробь:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Умножение и деление дробей
Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:
Порядок действий
Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:
Первым делом вычисляется степень.
Вторым – умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.
И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.
Но: выражение в скобках вычисляется вне очереди!
Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.
А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.
Итак, порядок действий для выражения выше такой:
Хорошо, это все просто.
Но это ведь не то же самое, что выражение с буквами?
Нет, это то же самое!
Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных, сложение дробей, сокращение дробей и так далее.
Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять формулы сокращенного умножения или просто выносить общий множитель за скобки.
Обычно наша цель – представить выражение в виде произведения или частного.
Например:
Упростим выражение \( \displaystyle \left( \frac
1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель – представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:
Больше это выражение упростить невозможно, все множители здесь – элементарные (ты еще помнишь, что это значит?).
Умножение дробей: что может быть проще.
3) Теперь можно и сократить:
Ну вот и все. Ничего сложного, правда?
Еще пример:
Сначала попробуй решить сам, и уж только потом посмотри решение.
Решение:
Перво-наперво определим порядок действий.
Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна.
Потом выполним деление дробей. Ну и результат сложим с последней дробью.
Схематически пронумерую действия:
Теперь покажу весть процесс:
Напоследок дам тебе два полезных совета:
Разберем 4 примера
И обещанная в самом начале:
Ответы:
Решения (краткие):
Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.
Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике
Вебинар: Выделение полного квадрата
Выделение полного квадрата — самый главный навык, относящийся к формулам сокращенного умножения.
Этот навык поможет вам решать квадратные уравнения, раскладывать выражение на множители, разобраться с с уравнением окружности в задаче с параметром (18-я задача), которая дает целых 4 первичных балла.
В общем, метод выделения полного квадрата — бесценный навык.
Берите тетрадку, ручку и смотрите видео. Алексей разберет 8 примеров! Слушайте условие, ставьте на паузу, решайте и потом сравнивайте с тем, как решил Алексей.
Кстати, само видео — это отрывок из вебинара, целиком посвященного формулам сокращенного умножения (решено 119 задач). Его можно посмотреть чуть ниже.
Вебинар: Формулы сокращенного умножения. Разбор 119 задач
Зачем нужны формулы сокращенного умножения и где они применяются.
Эти формулы нужны для задачи №9 – на преобразование выражений. Также они нужны для решения уравнений и неравенств, очень часто пригождаются в задачах №13 и 15.
А в 18 задаче без них вообще нечего делать.
Цель этого видео в том, чтобы вы тему «Формулы сокращенного умножения» закрыли полностью, чтобы научились решать любую задачу на ЕГЭ. Для этого вы вместе с репетитором Алексеем Шевчуком решите 119 задач.
Какие формулы сокращенного умножения вы научитесь применять, посмотрев это видео? Да все… 🙂