Что значит умножить одно натуральное число на другое

5 класс. Математика. Виленкин. Учебник. Ответы к стр. 67

Ноя 19

Что значит умножить одно натуральное число на другое

5 класс. Математика. Виленкин. Учебник. Ответы к стр. 67

Натуральные числа
Умножение и деление натуральных чисел
Умножение натуральных чисел и его свойства

Ответы к стр. 67

Что значит умножить одно натуральное число на другое?
Как называют числа, которые перемножают?
Как называют результат умножения?
Чему равно 1 • n? Чему равно 0 • n?
Сформулируйте переместительное свойство умножения. Запишите его с помощью букв.
Сформулируйте сочетательное свойство умножения. Запишите его с помощью букв.
В каких случаях можно опустить знак умножения?
Чему равно произведение m • 1?
Чему равно произведение m • 0?

Умножить натуральное число m на натуральное число n – значит найти сумму n слагаемых, каждое из которых равно m.
Множители.
Произведение.
1 • n = n, 0 • n = 0.
Произведение двух чисел не изменится при перестановке множителей: αb = bα.
Для умножения числа на произведение двух чисел можно сначала умножить число на первый множитель, а потом полученное произведение умножить на второй множитель: α • (bс) = (αb) • с.
Перед буквенными множителями: вместо 5 • b пишут 5b.
m • 1 = m.
m • 0 = 0.

404. Представьте в виде произведения сумму:
а) 707 + 707 + 707;
б) 50 + 50 + 50 + 50 + 50 + 50;
в) х + х + х + х + х + х.

а) 707 + 707 + 707 = 707 • 3;
б) 50 + 50 + 50 + 50 + 50 + 50 = 50 • 6;
в) х + х + х + х + х + х = х • 6 = 6х.

Источник

Общее представление об умножении натуральных чисел

Целью этого материала будет объяснение важного математического действия, называемого умножением. Для начала попробуем дать вам общее представление о нем и помочь понять сам смысл процесса умножения. Затем мы разберемся с основными определениями и правилами записи, которые используются при умножении натуральных чисел. В последнем пункте мы остановимся на том, для решения каких задач нам пригодится умножение.

Общий смысл умножения

Ранее, разбирая действие сложения, мы говорили о нем как об объединении некоторых множеств. Умножение – тоже своего рода объединение множеств, только разница в том, что все множества будут одинаковы. Что это значит на практике?

Умножение связано с ростом, увеличением изначального количества чего-либо. Вспомним выражение «приумножать богатства» (т.е. приобрести больше богатства, чем было изначально), «приумножать добро» и т.д. Таким образом, умножение сводится к многократному увеличению исходного количества чего-либо.

Взяв за основу общее представление об умножении, выясним конкретный смысл этого понятия. Для этого разберем задачу. У нас есть два мастера, каждый из которых может сковать за день четыре меча. Цель – выяснить, сколько оба мастера изготовят за один день.

Умножить одно натуральное число на другое – значит совершить действие, в результате которого получится число, являющееся суммой одинаковых слагаемых. При этом значение первого числа будет соответствовать значению одного слагаемого, а второе будет указывать на количество этих слагаемых.

Отдельно отметим, что результат умножения натуральных чисел – это тоже натуральное число, равно как и сумма натуральных чисел дает нам в итоге другое натуральное число.

Основные понятия умножения

В этом пункте мы укажем основные термины, которые используют при описании умножения, и правила их записи.

Знак умножения обычно отображают на письме в виде точки « · », которая располагается между двумя умножаемыми числами. К примеру, 6 · 7 или 2 · 78 (два числа со знаком умножения вместе образуют числовое выражение). Иногда вместо точки пишут звездочку или знак « х ».

Те числа, которые перемножают, называют множителями, а результат действия принято называть произведением натуральных чисел. Само числовое выражение из множителей и знака между ними также будем называть произведением.

При многоступенчатых подсчетах множители удобно нумеровать, т.е. указывать, что одно из чисел является первым множителем, другое – вторым и др.

Если нам нужно получить результат умножения некоторых чисел, то мы используем выражения «найти произведение», «вычислить произведение», «умножить одно число на другое».

Таким образом, процесс нахождения произведения двух чисел схематично можно выразить так: множитель · множитель = произведение.

Типы задач, решаемых с помощью умножения

В этом пункте мы разберем примеры, когда умение умножать натуральные числа нам пригодится.

1. Нахождение количества элементов некоторого множества, которое получилось в результате объединения равных множеств. Например:

В коробку помещается 10 книг. Как найти, сколько книг поместится в 6 коробок?

2. Нахождение итоговых значений каких-либо физических величин.

Период оборота Земли вокруг Солнца составляет один год, или в среднем 365 дней. Если Земля совершила 15 оборотов, то сколько прошло дней?

3. Если нужно найти, в какое количество раз одно множество больше, чем другое. Например:

Часто в таких задачах требуется вычислять возраст:

Внуку 15 лет, а дед старше в 4 раза. Как узнать, сколько лет деду?

Источник

Умножение натуральных чисел

Я сперва покажу на примере, для чего нужно умножение, а после дам определение умножения и подробно расскажу об этом действии.

Допустим, мы хотим купить 14 тетрадей по 22 рубля каждая. Планируя покупку, нам нужно знать, сколько мы заплатим за всю покупку?

Чтобы ответить на этот вопрос, нам нужно сложить стоимость каждой тетради, которую мы хотим купить. А, так мы запланировали покупку 14 тетрадей, тогда мы складываем 22 рубля 14 раз, то есть, находим сумму 14 слагаемых, каждое из которых равно 22 :

22+22+22+22+22+22+22+22+22+22+22+22+22+22=308 (то есть, 308 рублей).

Если размер и количество одинаковых слагаемых небольшие, мы без особого труда можем найти их сумму. Но что же делать, если слагаемые многозначные и их количество велико?

Умножение – это арифметическое действие сложения определенного количества одинаковых слагаемых.

Действие умножение – это частный случай действия сложение.

Число, которое является повторяющимся слагаемым, называется множимое (то, что множится, умножается).
Число, которое указывает на количество одинаковых слагаемых, называется множитель.
Множимое и множитель имеют общее название – сомножители.
Результат действия умножения называется произведением.

22 ∙14=308,

22x14=308,

22*14=308.

При записи от руки действие умножение принято обозначать при помощи точки, косой крест используется в основном при печати, а звездочка – в компьютерном наборе. Но даже и во время компьютерного набора грамотнее использовать точку или косой крест (букву х).

Прочитать действие умножения и результат можно такими способами:

Компоненты действия умножение для двух сомножителей:

Что значит умножить одно натуральное число на другое

Компоненты умножения для трех сомножителей и более:

Что значит умножить одно натуральное число на другое

Основные свойства умножения

Поскольку действие умножение является частным случаем действия сложение, то основные свойства сложения распространяются и на умножение.

Законы умножения и их следствия

Умножение обладает такими основными свойствами, называемые законами умножения, из которых вытекают остальные свойства и следствия:

Переместительный закон умножения.
Произведение двух или нескольких сомножителей от изменения их порядка не меняется.
Это значит, что значение произведения не зависит от порядка перемножения сомножителей, то есть, от порядка выполнения действия умножение.

Для двух сомножителей мы можем записать переместительный закон умножения в общем виде так:

ab=ba.

Допустим, нам нужно подсчитать количество отделений в шкафу (рис. 1).

Что значит умножить одно натуральное число на другое

Это свойство также верно для трех и более сомножителей.

К примеру, нам нужно подсчитать количество отделений в двух одинаковых шкафах (рис. 2).

Что значит умножить одно натуральное число на другое

5 ∙3+5 ∙3 =5 ∙3 ∙2.

15+15=15 ∙2,

30=30.

3 ∙5+3 ∙5=3 ∙5 ∙2,

15+15=15 ∙2,

30=30.

Значит, 5 ∙3 ∙2=3 ∙5 ∙2=30.

Поэтому, для трех сомножителей переместительный закон умножения в общем виде выглядит так:

abc=acb=bac=bca=cab=cba.

Сочетательный закон умножения.
Результат умножения трех и более чисел не изменяется, если любые из этих сомножителей заменить их произведением.
Следовательно, мы можем группировать множители между собой каким угодно образом, и выполнять действие умножения с этими группами.

В общем виде для трех сомножителей сочетательный закон умножения можно выразить так:

abc=a(bc)=(ab)c=b(ac).

Этот закон можно назвать следствием переместительного закона умножения.

Так, при подсчете количества отделений в двух шкафах на рисунке 2, мы можем сперва найти число отделений в одном шкафу, а потом умножить результат на 2 :

(5 ∙3) ∙2=15 ∙2=30,

(3 ∙5) ∙2=15 ∙2=30,

а можем сперва найти общее количество рядов отделений в обоих шкафах, а после умножить их на количество отделений в ряду:

(3 ∙2) ∙5=6 ∙5=30.

Как видите, результат во всех случаях одинаковый.

Особые случаи умножения: умножение единицы и нуля

Если в произведении двух чисел один из сомножителей единица, то произведение равно второму сомножителю:

a ∙1=1 ∙a=a.

А при умножении единицы на любое число (например, 17 ) мы находим сумму семи единиц, то есть, то количество единиц, из которых состоит данное число. Следовательно, сумма этих единиц равна самому данному числу :

1+1+1+1+1+1+1=7.

Если в произведении любого количества сомножителей одним из сомножителей является нуль, то и произведение равно нулю:

ab0=0ab=a0c=0.

Умножение однозначных чисел

Умножение двух однозначных натуральных чисел a и b – это нахождения суммы b слагаемых, каждое из которых равно числу a, и при этом a и b являются натуральными числами.

Для облегчения вычисления, были посчитаны результаты умножения всех однозначных чисел друг на друга, и сведены в специальные таблицы умножения.

Умножение многозначного числа на однозначное

900+80+5+900+80+5+900+80+5+900+80+5.

Воспользуемся законами сложения и сгруппируем одинаковые слагаемые этого выражения вместе:

900+900+900+900+80+80+80+80+5+5+5+5,

(900+900+900+900)+(80+80+80+80)+(5+5+5+5).

Суммы в скобках мы можем заменить на произведение одинаковых слагаемых и числа этих слагаемых в каждых скобках:

900 ∙4+80 ∙4+5 ∙4.

Таким образом, чтобы умножить многозначное число на однозначное, достаточно умножить это однозначное число на количество единиц в каждом разряде многозначного числа, и сложить полученные результаты.

Умножение в столбик многозначного числа на однозначное

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

4 раза по 8 десятков – это 32 десятка. Прибавим к ним 2 десятка, которые получились после умножения однозначного числа на единицы, получим 32 десятка, то есть, 3 сотни и 2 десятка. Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 (в уме) ставим маленькую цифру 3 :

Что значит умножить одно натуральное число на другое

4 раза по 9 сотен – это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч:

Что значит умножить одно натуральное число на другое

Умножение многозначных чисел

Прежде чем рассказать, как в общем случае умножить одно многозначное число на другое, я расскажу о двух частных случаях умножения многозначных чисел:

Умножение на число, состоящее из единицы и любого количества нулей

327 ∙10 =3270

327 ∙100 =32700

Итак, чтобы умножить какое-нибудь число на другое, которое начинается на единицу, и заканчивается любым количеством нулей, достаточно к концу первого числа дописать столько нулей, сколько содержится во втором числе.

Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей

327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327.

(327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327).

(327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2).

(327 ∙2) ∙10.

764 ∙3 =2292.

2292 ∙100 =229200.

Итак, чтобы умножить какое-нибудь число на другое, начинающееся любыми цифрами и заканчивающееся нулями, достаточно умножить первое число на число, образованное первыми цифрами второго, а к результату приписать справа столько нулей, сколько их было в конце второго числа.
Иными словами: нужно от второго числа отбросить нули в конце, умножить получившиеся числа, а к результату приписать справа столько нулей, сколько изначально отбросили.

Общее правило умножения чисел

Что значит умножить одно натуральное число на другое

Количество слагаемых ( 168 ) мы можем разложить на разрядные слагаемые ( 100+60+8 ) и согласно сочетательному закону сложения сгруппировать их следующим образом : сто слагаемых плюс шестьдесят слагаемых плюс восемь слагаемых.

Что значит умножить одно натуральное число на другое

Исходя из определения умножения, выражения в скобках мы можем представить не в виде суммы большого количества слагаемых, а как сумму произведений:

Что значит умножить одно натуральное число на другое

Таким образом, чтобы умножить два многозначных числа, достаточно последовательно умножить одно из этих чисел на количество единиц каждого из разрядов второго числа, и сложить полученные результаты.

Частное произведение – это число, полученное после умножения одного из сомножителей на количество единиц какого-либо разряда другого сомножителя.

Умножение в столбик многозначных чисел

При записи действия умножения в столбик сомножители располагаются друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел ; под множителем проводим горизонтальную черту, и ставим между сомножителями знак действия умножения:

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

В частных произведениях обычно не пишут (опускают) нули в конце числа для упрощения записи. При этом следует не забывать, что, первую полученную цифру частного произведения нужно писать в том разряде, цифру которого мы умножаем на множимое.

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

Некоторые особенности записи умножения в столбик

При записи нахождения произведения двух чисел в столбик существуют некоторые особенности, которые помогают сократить запись и упростить наглядность вычисления. Все они являются следствием свойств умножения.

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось ли это у вас или нет.

Изменение произведения чисел при изменении его сомножителей

Если увеличить один из сомножителей в несколько раз, произведение также увеличится в это же число раз.

18 ∙2 =36
18 ∙6 =108.

По-другому и быть не может, и вот почему.

Первое произведение представляет собой сумму двух слагаемых :

18+18.

Второе произведение – это сумма шести таких же слагаемых :

18+18+18+18+18+18.

(18+18)+(18+18)+(18+18).

Если уменьшить один из сомножителей в несколько раз, произведение также уменьшится в это же число раз.

Попробуйте самостоятельно доказать правильность этого свойства. Пишите в комментариях, получилось ли это у вас?

Если увеличить один из сомножителей в несколько раз, а второй в это же число раз уменьшить, то произведение при этом не поменяется.

32 ∙8 =256,

Увеличим первый сомножитель в 4 раза, а второй во столько же раз уменьшим:

128 ∙2 =256.

Теперь уменьшим первый сомножитель произведения 32 ∙8 в 4 раза, а второй уменьшим в это же число раз:

8 ∙32 =256.

Умножение произведения на число и числа на произведение

Если необходимо умножить произведение на число, нужно любой сомножитель этого произведения умножить на данное число, а результат умножить последовательно на оставшиеся сомножители.
(a ∙b ∙c) ∙d =(a ∙d) ∙b ∙c =(b ∙d) ∙a ∙c =(c ∙d) ∙a ∙b

10 ∙7 =70 (просто приписываем к семерке нуль),
70 ∙9 =630 (находим по таблице умножения 7 ∙9 =63 и приписываем в конце нуль).

Когда я пишу «находим по таблице умножения», это означает, что мы вспоминаем эту строку из таблицы, а не ищем её там на самом деле. Таблицу умножения нужно знать наизусть!

Если необходимо умножить число на произведение, нужно умножить данное число на любой сомножитель, а результат умножить на оставшиеся сомножители.
a ∙(b ∙c ∙d) =(a ∙b) ∙c ∙d =(a ∙c) ∙b ∙d =(a ∙d) ∙b ∙c.

30 ∙3 =90,

90 ∙2 =180.

Распределительный закон умножения (умножение суммы на число)

Когда мы рассматривали умножение многозначного и однозначного чисел, мы раскладывали число 975 на его разрядные слагаемые ( 900+70+5 ), а потом умножали на 4 отдельно каждое это слагаемое. Аналогично можно поступать при умножении числа на любую сумму.

(5+2+4+9)+(5+2+4+9)+ (5+2+4+9).

Все эти слагаемые представляют собой одну сумму чисел, сгруппированных в определенные группы. Запишем их без скобок:

5+2+4+9+5+2+4+9+5+2+4+9,

а затем, используя переместительный и сочетательный законы сложения, сгруппируем одинаковые слагаемые:

Основываясь на определении действия умножение, так как мы имеем в каждых скобках одинаковые слагаемые, переписываем это выражение следующим образом:

5 ∙3+2 ∙3+4 ∙3+9 ∙3.

Распределительный закон умножения: для умножения суммы на любое число, необходимо каждое слагаемое этой суммы умножить на данное число, а затем сложить полученные произведения.
Согласно переместительному закону умножения, это свойство справедливо и при умножении числа на сумму.
Для умножения числа на сумму, необходимо умножить данное число на каждое слагаемое этой суммы, а результаты полученных произведения сложить.
(a+b+c+d)∙z =z∙(a+b+c+d) =a ∙z+b ∙z+c ∙z+d ∙z.

Название распределительный происходит от того, что действие умножения на сумму распределяется между каждым из слагаемых этой суммы.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 3

Источник

Что значит умножить одно натуральное число на другое?

Что значит умножить одно натуральное число на другое

Насколько помню школьный курс арифметики, то натуральными называются целые числа от нуля и выше. Для того, что бы одно натуральное число умножить на другое натуральное число необходимо первое число прибавить к самому себе столько раз, сколько указано во втором числе. Или наоборот. второе число прибавить к самому себе столько раз, сколько указано в первом числе.

Что значит умножить одно натуральное число на другое

выражаясь попроще можно сказать что умножить число А на число Б значит сложить число А друг с другом Б раз

Что значит умножить одно натуральное число на другое

Лохотрон. Причем ленивы и безалаберны.

Раздел о продукции не содержит сколько-нибудь вменяемой информации для анализа и понимания сути для чего и кого эти продукты. Есть пара-тройка общих фраз о виртуальных товарах. Смех да и только.

Маркетинг-плана, как такового не нашла вовсе, ибо три фразы воды не в счет

Новостями поделиться не получится по той простой причине, что официальный сайт компании не трудится давать их, а какие-то непонятные странички тех, кто уже лоханулся и является агентом аргументами и новостями являться не могут )))

Кстати, в своё время, для того, чтобы понять: чем же собственно говоря занимается инетглобал, мне пришлось облазить кучу ссылок(официальный сайт таинственнем и немногословен)

раскрутка и поддержка

Вывод: лохотрон. Друг ныне почившего известнейшего афериста интвей, ныне пытающегося стать Глобал Нетворк. Даже названия похожи )))))

Что значит умножить одно натуральное число на другое

Что значит умножить одно натуральное число на другое

О наркозе вам нужно знать, что это общая анестезия. Получите препарат в вену, уснёте, потом проснётесь.

Важно встретиться с анестезиологом перед операцией; причём, если у вас есть какие-то проблемы со здоровьем, сделать это достаточно заранее, чтобы можно было провести необходимое дообследование и в случае необходимости коррекцию лечения. Он сможет вам рассказать, чего стоит опасаться в вашем конкретном случае (например, проблемы с подключением к наркозной машине, повреждение зубов при этом и прочее; это тоже может требовать предварительной подготовки).

Особого внимания заслуживает «семейный анамнез», то есть, были ли осложнения и особенно смерти у родственников от наркоза. Дело в том, что существуют такие вариации ферментов, вред от которых проявляется только при встрече с определёнными лекарствами, используемыми для наркоза (в повседневной жизни вы их не видите). И не во всех случаях в России есть препараты для устранения этого вреда, поэтому в отдельных случаях необходимо заранее особенно спланировать наркоз или вообще подумать о поиске клинике, которая предоставляет возможность такого планирования (речь об оборудовании и определённых препаратах).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *