Углерод — элемент номер шесть. Прямо в середине первой строки периодической таблицы химических элементов. Ну и что? Углерод основа жизни – это самый важный элемент живых организмов. Без этого элемента жизнь, какой мы ее знаем, не существовала бы.
Как вы увидите, шестой элемент периодической таблицы является центральным в соединениях, необходимых для жизни.
Значение углерода
Соединение, содержащееся главным образом в живых организмах, известно как органическое соединение.
Органические соединения составляют клетки и другие структуры организмов и осуществляют жизненные процессы. Углерод является основным элементом в органических соединениях, поэтому элемент необходим для жизни на Земле. Углерод основа жизни и она, какой мы ее знаем, не могла бы существовать. Теоретически, вроде бы возможны другие формы жизни, но человечество их не знает.
Соединения
Соединение — это вещество, состоящее из двух или более элементов. Соединение имеет уникальный состав, который всегда один и тот же. Мельчайшая частица соединения называется молекулой. Рассмотрим в качестве примера воду. Молекула воды всегда содержит один атом кислорода и два атома водорода. Состав воды выражается химической формулой H2O. Вода не является органическим соединением. Молекула воды всегда имеет такой состав: один атом кислорода и два атома водорода.
Что заставляет атомы молекулы воды «слипаться» вместе? Ответ — химические связи. Химическая связь-это сила, которая удерживает молекулы вместе. Химические связи образуются, когда вещества вступают в реакцию друг с другом. Химическая реакция-это процесс, который превращает одни химические вещества в другие. Для образования соединения необходима химическая реакция. Для разделения веществ в соединении необходима еще одна химическая реакция.
Почему этот элемент главный для жизни
Почему углерод так важен для жизни? Причина — способность образовывать устойчивые связи со многими элементами, в том числе и с самим собой. Это свойство позволяет шестому элементу образовывать огромное разнообразие очень больших и сложных молекул.
Однако миллионы органических соединений можно разделить всего на четыре основных типа: углеводы, липиды (жиры), белки и нуклеиновые кислоты.
Вы можете сравнить четыре типа в таблице ниже:
Элементы
Тип соединений
Состав
Функции
Мономер (повторяющиеся звенья)
Углеводы
сахар, крахмал
углерод, водород, кислород
снабжает энергией клетки, накапливает энергию, формирует структуры тела
помогает клеткам сохранять форму, формирует мышцы, ускоряет химические реакции, несет сообщения и материалы.
аминокислота
Нуклеиновые кислоты
ДНК-РНК
содержит инструкции для белков, передает инструкции от родителей к потомству, помогает производить белки
нуклеотид
Углеводы, белки и нуклеиновые кислоты-это крупные молекулы (макромолекулы), построенные из более мелких молекул (мономеров) в результате реакций дегидратации. В реакции дегидратации вода удаляется по мере соединения двух мономеров.
Возникновение «жизненного» элемента углерода
Каждый атом углерода, находящийся на Земле и во Вселенной, возник в ядре красных гигантов при температуре около 100 миллионов градусов.
Атомы углерода как сказано выше, являются основой любого живого организма, ибо обладают способностью соединяться в длинные цепочки и создавать сложные органические молекулы.
Углеродные атомы, из которых построен человеческий организм и биосфера в целом, возникали в те далекие времена, когда еще не существовали Солнце и Солнечная система, когда не было еще даже полимерной цепи, из которой позднее родилось Солнце и все его семейство. Именно в звездах-гигантах возникали тогда из атомов гелия атомы углерода. Это произошло более семи миллиардов лет тому назад. Из звезд атомы углерода потом попали в межзвездное пространство. Там они смешались с межзвездным веществом, из которого позднее возникли полимерные цепи, включая и создание нашей Солнечной системы.
Таким образом, углерод основа жизни которая переместилась из недр старых красных гигантов на нашу планету, а отсюда в земные растения и, наконец, вместе с пищей — в человеческий организм. Именно тогда зародилась жизнь на Земле.
Можно сказать, что без красных гигантов, существовавших семь миллиардов лет назад, на Земле не было бы углерода, а, следовательно, и жизни. Итак, с точки зрения астрономии нашими далекими предками являются именно красные гиганты.
Углеродная форма жизни на Земле — от слизистых бактерий до разумных людей имеют одну и ту же базовую биохимию. Углерод, по-видимому, является атомом, наилучшим образом подходящим для образования длинноцепочечных молекул, необходимых для жизни. Откуда мы знаем, что другие биохимии невозможны?
Возможно, другие виды биологии настолько отличаются от жизни на Земле, что мы не знаем, как их изучать и даже обнаруживать другие формы жизни.
Кремниевая форма жизни
Например, элемент кремний (Si) имеет химические свойства, аналогичные свойствам углерода, и поэтому может быть пригоден вместо углерода в качестве основы для некоторых живых организмов.
Такая альтернативная биохимия может иметь реальные преимущества, подразумевая, что жизнь на основе кремния может быть выбрана для выживания в странных уголках и трещинах на нашей планете, или, возможно, особенно в чужеродной среде на внеземных телах.
Почему нет «кремниевой» жизни
Почему же тогда на Земле нет форм жизни, основанных на кремнии, особенно учитывая, что кремний примерно в 135 раз более распространен, чем углерод на нашей планете?
Углерод имеет более прочные связи
Ответ заключается в том, что, хотя кремний имеет преимущество в интенсивном нагревании, углерод преобладает в типичных средах на поверхности Земли или вблизи нее. То есть при так называемой комнатной температуре 20 градусов углерод связывается с другими атомами более прочно, и особенно с другими атомами. В частности, углерод с его 4 непарными внешними электронами может образовывать плотные химические связи, разделяя эти электроны с другими элементами.
Аналогично, хотя кремний является возможной альтернативой углероду, чтобы понять, почему он не так прочен как углерод, рассмотрим следующее.
Кремний, расположенный чуть ниже углерода в той же колонке периодической таблицы элементов, также имеет 4 неспаренных электрона на своей внешней орбите. Увы, как отмечалось выше, кремний не может связываться с другими атомами так же, как углерод. Это происходит потому, что 4 неспаренных электрона атома углерода обычно находятся на его второй орбитали и поскольку 8 — это максимальное число электронов, допустимое на второй орбитали любого атома, эта орбиталь становится полной и завершенной, когда углерод связывается с другими атомами со всех 4 сторон.
Соответственно, химическая связь углерода является одной из самых сильных.
Напротив, 4 неспаренных электрона кремния обычно находятся на его третьей орбитали и здесь максимальное число электронов, разрешенных на третьей орбитали любого атома, составляет 18. Хотя кремний обычно может иметь атомы, связанные с каждой из его 4 сторон, так же, как углерод, Кремниевая связь не так сильна, как углеродная связь, потому что внешняя орбиталь кремния часто не имеет полного набора электронов, даже когда она связана с другими атомами. Как правило, углеродные связи вдвое прочнее кремниевых.
Еще более важно то, что углерод наиболее сильно связан с другими атомами углерода. Это особенно верно для алмаза, который состоит из атомов углерода, связанных друг с другом. На самом деле алмаз — самое твердое из известных веществ; твердость обусловлена большой прочностью связи. Кроме того, углеродные связи также не подвержены влиянию воды, что дает углероду еще одно преимущество в наиболее вероятной жидкой среде для жизни. Кремний, с другой стороны, не так хорошо связывается с другими атомами кремния, и совсем не хорошо в присутствии многих жидкостей. Цепи кремния особенно неустойчивы в воде; они распадаются на части.
Алмаз является самым твердым из известных веществ. Каждый атом, состоящий из чистых атомов углерода, прочно связан с 4 другими атомами.
Тот факт, что связь углерод-углерод сильнее, чем связь кремний-кремний, особенно при погружении в жидкость, является важным фактором, благоприятствующим жизни на основе этого элемента.
Образование сложных химических связей
Другая причина-нежелание кремния образовывать двойные и тройные связи, которые обычно придают еще большую прочность группе из двух или более атомов. Углерод создает сложный порядок соединения атомов элементов — химическое строение.
Кроме того углерод легко образует длинные цепи, и он распространен во всей Вселенной.
Реагирование кислорода и углерода
Третий аргумент в пользу углеродной жизни — высокое космическое изобилие кислорода. Когда C химически реагирует с O, в результате образуется углекислый газ CO2. Это газ и поэтому может легко сочетаться с другими соединениями; в нашем случае люди выдыхают углекислый газ после того, как вдыхаемый O реагирует с C в наших телах во время дыхания. Однако, когда кремний (Si) вступает в реакцию с O, в результате получается кварц (SiO2), который является твердым веществом, которое вряд ли легко взаимодействует с другими соединениями. Можете ли вы представить себе живых существ, выдыхающих кварцевые частички каждый раз, когда они делают вдох? Фотосинтез и дыхание основополагающая часть нашей жизни.
Поэтому нас не должно удивлять, что кремний не играет никакой биохимической роли на Земле, несмотря на его широкое распространение.
Возможные другие типы жизни
При соответствующих условиях на любой планете, как на углеродной, так и на кремниевой основе, может первоначально сформироваться жизнь. Могут возникнуть и другие типы жизни — возможно, на основе редкого элемента Германия, который также имеет 4 электрона на своей внешней (четвертой) орбите, поскольку он также находится в том же столбце периодической таблицы, что и углерод.
Однако углеродная форма жизни, несомненно, в конечном счете уничтожит все другие типы жизни. Углерод, очевидно, обладает большей гибкостью и прочностью сцепления и может лучше адаптироваться к изменяющимся сухо-влажным условиям. Таким образом, с химической точки зрения углеродная форма жизни лучше всего подходит для того, чтобы служить основой длинноцепочечных молекул, необходимых для жизни.
Несмотря на эти сильные утверждения, мы не должны полностью закрывать свой разум от странных биохимических явлений. Некоторые планеты могут иметь странные физические условия, которые на самом деле благоприятствуют другим типам жизни.
Например, тепло приходит на ум как одно из таких свойств, которое, возможно, предпочтет химию кремниевой и углеродной формой жизни.
Кремний-кислородные связи могут выдерживать температуру до 300 градусов по Цельсию, а кремний-алюминиевые почти до 600 градусов по Цельсию. Напротив, углеродные связи любого типа разрушаются при таких высоких температурах, что делает жизнь на основе углерода невозможной. Это термостойкое свойство кремния является основной причиной того, что силиконовые компаунды часто используются в качестве промышленных смазок; даже горячее оборудование работает плавно с кремниевой смазкой.
Если бы жизнь на основе кремния возникла на горячей планете где-нибудь в Галактике, ее гибкость и приспособляемость все еще были бы сильно ограничены. Это не исключает простых, примитивных типов жизни на основе кремния, живущих в таких чуждых мирах.
Но, основываясь на всем, что известно о химии, трудно представить себе что-либо столь сложное, как разумная жизнь, основанная на других элементах.
Мы посвятили две статьи воздуху, без которого жизнь на нашей планете была бы невозможна. Теперь поговорим об углероде — элементе, который является основой жизни на земле. Ученые, уфологи и фантасты даже ввели в обиход термин «углеродная жизнь». И он вполне справедлив, так как все белки, аминокислоты, жиры, ДНК и РНК построены на основе углеводородных молекул.
Углерод — простое неорганическое вещество, элемент таблицы Менделеева. Обозначается буквой «С» (Carboneum). В виде алмазов, графита и древесного угля известен человечеству с древнейших времен. Название carbone (углерод) впервые было введено в химическую науку французскими учеными. А. Лавуазье доказал, что уголь — это элементарное химическое вещество, а не носитель некоего невесомого флюида флогистона, отвечающего за горючие свойства веществ. Он же установил, что алмаз — это кристаллическая форма углерода.
Три формы углерода
Углерод — удивительное вещество, физические свойства которого и даже внешний вид описать однозначно просто невозможно. Этот элемент — рекордсмен по количеству аллотропных модификаций. Три формы углерода: • кристаллическая: алмазы, наноалмазы, фуллерены, фуллерит, графиты, карбины, лонсдейлиты, углеродные нанотрубки и нановолокна, графен, волокна и структуры; • аморфная: угли (древесный, в том числе активированный уголь, антрацит и др.), коксы, сажа, углеродная нанопена, стеклоуглерод, техуглерод; • кластерная: астралены, диуглерод, углеродные наноконусы.
Молекулы кристаллического углерода характеризуются правильной кристаллической решеткой. Большинство форм кристаллического углерода отличаются очень высокой твердостью и тугоплавкостью. Алмаз обладает высокой плотностью, почти не проводит тепло и ток. Графит, наоборот, имеет невысокую плотность и слоистое строение; проводит ток, может возгоняться, минуя жидкое состояние.
Вещества, относящиеся к аморфным формам, не являются чистой формой углерода, но содержат углерод в очень значительных количествах. Для аморфного углерода характерна высокая теплоемкость, свойства полупроводников, невысокая плотность, относительно невысокая термостойкость — при температуре выше 1600 °С он превращается в графит. Как правило, их основой являются разные формы мелкокристаллического графита в виде неупорядочной структуры.
Углеродные кластеры — сложные соединения с очень интересными свойствами. Им, а также другим перспективным материалам на основе углерода, мы посвятим одну из ближайших статей.
Химические свойства
С химическими свойствами немного проще. В нормальных условиях углерод практически не вступает в реакции с другими элементами и веществами, инертен к кислотам, щелочам, галогенам. При высоких температурах проявляет сильные восстановительные свойства. Наиболее химически активны аморфные виды углерода, наиболее инертны — кристаллические. Графит по химической активности занимает серединное положение. При высоких температурах углерод окисляется кислородом (горит), образует несколько видов оксидов.
Графит и аморфный углерод при высоких температурах реагируют с водородом, азотом, фтором, галогенами, щелочными металлами, солями металлов, серой. В результате реакции с водородом и азотом получается синильная кислота. Взаимодействие большинства металлов, углерода, бора и кремния приводит к образованию карбидов. Углерод восстанавливает оксиды металлов до металлов. При определенных условиях удается преобразовать углерод, содержащийся в твердых видах топлива, в горючие газы (реакция газификации топлив очень важна для промышленности).
Главное свойство углерода — способность соединяться в длинные цепи, причем эти цепи могут содержать как атомы углерода, так и другие атомы. Цепи могут замыкаться, разветвляться, образовывать циклы, быть разной длины, соединяться («сшиваться») между собой в разнообразные структуры. Такие углеродно-водородные цепи — основа всей органической химии.
Следующая статья будет о содержании углерода в природе, его опасности и сферах применения.
В поисках внеземного разума ученые часто получают обвинения в «углеродном шовинизме», поскольку ожидают, что другие жизнеформы во Вселенной будут состоять из тех же биохимических строительных блоков, что и мы, соответствующим образом выстраивая свои поиски. Но жизнь вполне может быть другой — и люди об этом задумываются — поэтому давайте изучим десять возможных биологических и небиологических систем, которые расширяют определение «жизни».
Метаногены
Жизнь на основе кремния
Кремний остается популярным именно потому, что очень похож на углерод и может образовывать четыре связи, подобно углероду, что открывает возможность создания биохимической системы полностью зависимой от кремния. Это самый распространенный элемент в земной коре, если не считать кислород. На Земле есть водоросли, которые включают кремний в свой процесс роста. Кремний играет вторую после углерода роль, поскольку тот может образовывать более стабильные и разнообразные комплексные структуры, необходимые для жизни. Углеродные молекулы включают кислород и азот, которые образуют невероятно крепкие связи. Сложные молекулы на основе кремния, к сожалению, имеют тенденцию распадаться. Кроме того, углерод чрезвычайно распространен во Вселенной и существует миллиарды лет.
Едва ли жизнь на основе кремния появится в окружении, подобном земному, поскольку большая часть свободного кремния будет заперта в вулканических и магматических породах из силикатных материалов. Предполагают, что в высокотемпературном окружении все может быть по-другому, но никаких доказательств пока не нашли. Экстремальный мир вроде Титана мог бы поддерживать жизнь на основе кремния, возможно, вкупе с метаногенами, так как молекулы кремния вроде силанов и полисиланов могут имитировать органическую химию Земли. Тем не менее на поверхности Титана преобладает углерод, тогда как большая часть кремния находится глубоко под поверхностью.
Астрохимик NASA Макс Бернштейн предположил, что жизнь на основе кремния могла бы существовать на очень горячей планете, с атмосферой богатой водородом и бедной кислородом, позволяя случиться комплексной силановой химии с обратными кремниевыми связями с селеном или теллуром, но такое, по мнению Бернштейна, маловероятно. На Земле такие организмы размножались бы очень медленно, а наши биохимии никак бы не мешали друг другу. Они, впрочем, могли бы медленно поедать наши города, но «к ним можно было бы применить отбойный молоток».
Другие биохимические варианты
Другая возможная форма жизни, которая привлекла определенное внимание, это жизнь на основе мышьяка. Вся жизнь на Земле состоит из углерода, водорода, кислорода, фосфора и серы, но в 2010 году NASA объявило, что нашло бактерию GFAJ-1, которая могла включать мышьяк вместо фосфора в клеточную структуру без всяких последствий для себя. GFAJ-1 живет в богатых мышьяков водах озера Моно в Калифорнии. Мышьяк ядовит для любого живого существа на планете, кроме нескольких микроорганизмов, которые нормально его переносят или дышат им. GFAJ-1 стала первым случаем включения организмом этого элемента в качестве биологического строительного блока. Независимые эксперты немного разбавили это заявление, когда не нашли никаких свидетельств включения мышьяка в ДНК или хотя бы каких-нибудь арсенатов. Тем не менее разгорелся интерес к возможной биохимии на основе мышьяка.
В качестве возможной альтернативы воде для строительства форм жизни выдвигался и аммиак. Ученые предположили существование биохимии на основе азотно-водородных соединений, которые используют аммиак в качестве растворителя; он мог бы использоваться для создания протеинов, нуклеиновых кислот и полипептидов. Любые формы жизни на основе аммиака должны существовать при низких температурах, при которых аммиак принимает жидкую форму. Твердый аммиак плотнее жидкого аммиака, поэтому нет никакого способа остановить его замерзание при похолодании. Для одноклеточных организмов это не составило бы проблемы, но вызвало бы хаос для многоклеточных. Тем не менее существует возможность существования одноклеточных аммиачных организмов на холодных планетах Солнечной системы, а также на газовых гигантах вроде Юпитера.
Сера, как полагают, послужила основой для начала метаболизма на Земле, и известные организмы, в метаболизм которых включена сера вместо кислорода, существуют в экстремальных условиях на Земле. Возможно, в другом мире формы жизни на основе серы могли бы получить эволюционное преимущество. Некоторые считают, что азот и фосфор могли бы также занять место углерода при довольно специфических условиях.
Меметическая жизнь
Подобные мемы существовали до человечества, в социальных призывах птиц и усвоенном поведении приматов. Когда человечество стало способно абстрактно мыслить, мемы получили дальнейшее развитие, управляя племенными отношениями и формируя основу для первых традиций, культуры и религии. Изобретение письма еще больше подтолкнуло развитие мемов, поскольку они смогли распространяться в пространстве и времени, передавая меметичную информацию подобно тому, как гены передают биологическую. Для некоторых это чистая аналогия, но другие считают, что мемы представляют уникальную, хотя немного рудиментарную и ограниченную форму жизни.
Некоторые пошли еще дальше. Георг ван Дрим разработал теорию «симбиосизма», которая подразумевает, что языки — это сами по себе формы жизни. Старые лингвистические теории считали язык чем-то вроде паразита, но ван Дрим полагает, что мы живем в сотрудничестве с меметическими сущностями, населяющими наш мозг. Мы живем в симбиотических отношениях с языковыми организмами: без нас они не могут существовать, а без них мы ничем не отличаемся от обезьян. Он считает, что иллюзия сознания и свободной воли вылилась из взаимодействия животных инстинктов, голода и похоти человека-носителя и лингвистического симбионта, воспроизводящегося с помощью идей и смыслов.
Синтетическая жизнь на основе XNA
Жизнь на Земле основана на двух переносящих информацию молекулах, ДНК и РНК, и долгое время ученые размышляли, можно ли создать другие похожие молекулы. Хотя любой полимер может хранить информацию, РНК и ДНК отображают наследственность, кодирование и передачу генетической информации и способны адаптироваться с течением времени в процессе эволюции. ДНК и РНК — это цепи молекул-нуклеотидов, состоящих из трех химических компонентов — фосфата, пятиуглеродной сахарной группы (дезоксирибоза в ДНК или рибоза в РНК) и одного из пяти стандартных оснований (аденин, гуанин, цитозин, тимин или урацил).
В 2012 году группа ученых из Англии, Бельгии и Дании первой в мире разработала ксенонуклеиновую кислоту (КНК, XNA), синтетические нуклеотиды, функционально и структурно напоминающие ДНК и РНК. Они были разработаны путем замены сахарных групп дезоксирибозы и рибозы различными субститутами. Такие молекулы делали и раньше, но впервые в истории они были способны воспроизводиться и эволюционировать. В ДНК и РНК репликация происходит с помощью молекул полимеразы, которые могут читать, транскибировать и обратно транскрибировать нормальные последовательности нуклеиновых кислот. Группа разработала синтетические полимеразы, которые создали шесть новых генетических систем: HNA, CeNA, LNA, ANA, FANA и TNA.
Одна из новых генетических систем, HNA, или гекситонуклеиновая кислота, была достаточно надежной, чтобы хранить нужное количество генетической информации, которая может послужить в качестве основы для биологических систем. Другая, треозонуклеиновая кислота, или TNA, оказалась потенциальным кандидатом на таинственную первичную биохимию, царившую на рассвете жизни.
Есть масса потенциальных применений этих достижений. Дальнейшие исследования могут помочь в разработке лучших моделей появления жизни на Земле и будут иметь последствия для биологических измышлений. XNA может получить терапевтическое применение, ведь можно создать нуклеиновые кислоты для лечения и связи с конкретными молекулярными целями, которые не будут портиться так быстро, как ДНК или РНК. Они даже могут лечь в основу молекулярных машин или вообще искусственной формы жизни.
Но прежде чем это станет возможно, должны быть разработаны другие энзимы, совместимые с одной из XNA. Некоторые из них уже разработали в Великобритании в конце 2014 года. Есть также возможность, что XNA может причинять вред РНК/ДНК-организмам, поэтому безопасность должна быть на первом месте.
Хромодинамическая жизнь могла бы быть основана на сильном ядерном взаимодействии, которое считается сильнейшим из фундаментальных сил, но только на чрезвычайно коротких расстояниях. Фрейтас предположил, что такая среда может быть возможна на нейтронной звезде, тяжелом вращающемся объекте 10-20 километров в диаметре с массой звезды. С невероятной плотностью, мощнейшим магнитным полем и гравитацией в 100 миллиардов раз сильнее, чем на Земле, у такой звезды было бы ядро с 3-километровой коркой кристаллического железа. Под ней было бы море с невероятно горячими нейтронами, различными ядерными частицами, протонами и ядрами атомов и возможные богатые нейтронами «макроядра». Эти макроядра в теории могли бы сформировать крупные сверхъядра, аналогичные органическим молекулам, нейтроны выступали бы эквивалентом воды в причудливой псевдобиологической системе.
Гравитационные существа тоже могут существовать, поскольку гравитация является самой распространенной и эффективной фундаментальной силой во Вселенной. Такие существа могли бы получать энергию из самой гравитации, получая неограниченное питание из столкновений черных дыр, галактик, других небесных объектов; существа поменьше — из вращения планет; самые маленькие — из энергии водопадов, ветра, приливов и океанических течений, возможно, землетрясений.
Формы жизни из пыли и плазмы
Группа Цытовича обнаружила, что когда электронные заряды отделяются и плазма поляризуется, частицы в плазме самоорганизуются в форму спиральных структур вроде штопора, электрически заряженных, и притягиваются друг к другу. Они также могут делиться, образуя копии оригинальных структур, подобно ДНК, и индуцировать заряды в своих соседях. По мнению Цытовича, «эти сложные, самоорганизующиеся плазменные структуры отвечают всем необходимым требованиям, чтобы считать их кандидатами в неорганическую живую материю. Они автономны, они воспроизводятся и они эволюционируют».
Некоторые скептики считают, что такие заявления являются больше попыткой привлечь внимание, нежели серьезными научными заявлениями. Хотя спиральные структуры в плазме могут напоминать ДНК, сходство в форме необязательно предполагает сходство в функциях. Более того, тот факт, что спирали воспроизводятся, не означает потенциал жизни; облака тоже так делают. Что еще больше удручает, большая часть исследований была проведена на компьютерных моделях.
Один из участников эксперимента также собщил, что хотя результаты действительно напоминали жизнь, в конце концов, они были «просто особой формой плазменного кристалла». И все же, если неорганические частицы в плазме могут перерасти в самовоспроизводящиеся, развивающиеся формы жизни, они могут быть наиболее распространенной формой жизни во Вселенной, благодаря вездесущей плазме и межзвездным облакам пыли по всему космосу.
Неорганические химические клетки
Группа Кронина начала с создания солей из отрицательно заряженных ионов крупных оксидов металла, связанных с небольшим положительно заряженным ионом вроде водорода или натрия. Раствор из этих солей затем впрыскивается в другой солевой раствор, полный больших положительно заряженных органических ионов, связанных с небольшими отрицательно заряженными. Две соли встречаются и обмениваются частями, так что крупные оксиды металла становятся партнерами с крупными органическими ионами, образуя что-то вроде пузыря, который непроницаем для воды. Изменяя костяк оксида металла, можно добиться того, что пузыри приобретут свойства биологических клеточных мембран, которые выборочно пропускают и выпускают химические вещества из клетки, что потенциально может позволить протеканию того же типа контролируемых химических реакций, который происходит в живых клетках.
Группа ученых также сделала пузыри в пузырях, имитируя внутренние структуры биологических клеток, и добилась прогресса в создании искусственной формы фотосинтеза, которая потенциально может быть использована для создания искусственных клеток растений. Другие синтетические биологи отмечают, что такие клетки могут никогда не стать живыми, пока не получат систему репликации и эволюции вроде ДНК. Кронин не теряет надежду на то, что дальнейшее развитие принесет свои плоды. Среди возможных применений этой технологии есть также разработка материалов для солнечных топливных устройств и, конечно, медицина.
По словам Кронина, «основная цель — это создать комплексные химические клетки с живыми свойствами, которые могут помочь нам понять развитие жизни и пойти этим же путем, чтобы привнести новые технологии на основе эволюции в материальный мир — своего рода неорганические живые технологии».
Зонды фон Неймана
Другие футурологи вроде Фримена Дайсона и Эрика Дрекслера довольно быстро применили эти идеи к области космических исследований и создали зонд фон Неймана. Отправка самовоспроизводящегося робота в космос может быть самым эффективным способом колонизации галактики, ведь так можно захватить весь Млечный Путь меньше чем за один миллион лет, даже будучи ограниченными скоростью света.
Как объяснил Мичио Каку:
«Зонд фон Неймана — это робот, предназначенный для достижения далеких звездных систем и создания фабрик, которые будут строить копии самих себя тысячами. Мертвая луна, даже не планета, может стать идеальным пунктом назначения для зондов фон Неймана, поскольку там будет проще садиться и взлетать с этих лун, а также потому что на лунах нет эрозии. Зонды могли бы жить за счет земли, добывая железо, никель и другое сырье для строительства роботизированных фабрик. Они бы создали тысячи копий самих себя, которые затем разошлись бы в поисках других звездных систем».
За долгие годы были придуманы различные версии базовой идеи зонда фон Неймана, включая зонды освоения и разведки для тихого исследования и наблюдения внеземных цивилизаций; зондов связи, разбросанных по всему космосу, чтобы лучше улавливать радиосигналы инопланетян; рабочие зонды для строительства сверхмассивных космических структур; зонды-колонизаторы, которые будут покорять другие миры. Могут быть даже путеводные зонды, которые будут выводить юные цивилизации в космос. Увы, могут быть и зонды-берсеркеры, задачей которых будет уничтожение следов любой органики в космосе, за чем последует строительство полицейских зондов, которые будут эти атаки отражать. Учитывая то, что зонды фон Неймана могут стать своего рода космическим вирусом, нам стоит осторожно подходить к их разработке.