Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для сравнения величин.
Символ
Название
Тип знака
>
больше
строгий знак (число на границе не включается )
строгий знак (число на границе не включается )
≥
больше или равно
нестрогий знак (число на границе включается )
≤
меньше или равно
нестрогий знак (число на границе включается )
Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство отличается от уравнения.
В отличии от уравнения в неравенстве вместо знака равно « = » используют любой знак сравнения: « > », « », « ≤ » или « ≥ ».
Линейным неравенством называют неравенство, в котором неизвестное стоит только в первой степени.
Рассмотрим пример линейного неравенства.
Как решить линейное неравенство
Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное в первой степени с коэффициентом « 1 ».
При решении линейных неравенств используют правило переноса и правило деления неравенства на число.
Правило переноса в неравенствах
Также как и в уравнениях, в неравенствах можно переносить любой член неравенства из левой части в правую и наоборот.
Вернемся к нашему неравенству и используем правило переноса.
Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить, понятие числовой оси.
Нарисуем числовую ось для неизвестного « x » и отметим на ней число « 14 ».
При нанесении числа на числовую ось соблюдаются следующие правила:
Заштрихуем на числовой оси по полученному ответу « x » все решения неравенства, то есть область слева от числа « 14 ».
Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство « x − 6 » даст верный результат.
Возьмем, например число « 12 » из заштрихованной области и подставим его вместо « x » в исходное неравенство « x − 6 ».
Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.
Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство дают верный результат.
Решением неравенства называют множество чисел из заштрихованной области на числовой оси.
В нашем примере ответ « x » можно понимать так: любое число из заштрихованной области (то есть любое число меньшее « 14 ») будет являться решением неравенства « x − 6 ».
Правило умножения или деления неравенства на число
Рассмотрим другое неравенство.
Используем правило переноса и перенесём все числа без неизвестного, в правую часть.
Теперь нам нужно сделать так, чтобы при неизвестном « x » стоял коэффициент « 1 ». Для этого достаточно разделить и левую, и правую часть на число « 2 ».
При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.
Разделим « 2x > 16 » на « 2 ». Так как « 2 » — положительное число, знак неравенства останется прежним.
Рассмотрим другое неравенство.
Разделим неравенство на « −3 ». Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение квадратного неравенства
Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти множество, для которых оно выполняется.
Квадратное неравенство выглядит так:
Квадратное неравенство можно решить двумя способами:
Решение неравенства графическим методом
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.
Как дискриминант влияет на корни уравнения:
Решение неравенства методом интервалов
Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.
Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, или ≥ — наносим штриховку над промежутками со знаками +.
Если неравенство со знаком
Плюс или минус: как определить знаки
Можно сделать вывод о знаках по значению старшего коэффициента a:
если a > 0, последовательность знаков: +, −, +,
если a 0, последовательность знаков: +, +,
Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.
Неравенство примет вид:
В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.
Отобразим эти данные на чертеже:
2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.
Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.
Пример 2. Применить метод интервалов для решения неравенства х2+4х+3
На уроке Уравнение прямой на плоскости мы рассмотрели общее уравнение прямой . Уравнение – хорошо, в жизни пригодится, но не менее важно знать геометрический смысл линейных неравенств двух переменных. Принципиальное отличие от неравенств с одной переменной состоит в размерности. Если в примерах статьи Область определения функции существуют только «иксы» и только ось абсцисс, то сейчас добавляются «игреки» и поле деятельности расширяется до всей координатной плоскости. Далее по тексту словосочетание «линейное неравенство» понимаем в двумерном смысле, который прояснится через считанные секунды.
Помимо аналитической геометрии, материал актуален для ряда задач математического анализа, экономико-математического моделирования, поэтому рекомендую проштудировать данную лекцию со всей серьёзностью.
Линейные неравенства
Различают два типа линейных неравенств:
1) Строгие неравенства: .
2) Нестрогие неравенства: .
Какой геометрический смысл этих неравенств? Если линейное уравнение задаёт прямую, то линейное неравенство определяет полуплоскость.
Для понимания нижеследующей информации нужно знать разновидности прямых на плоскости и уметь строить прямые. Если возникнут трудности в этой части, прочитайте справку Графики и свойства функций – параграф про линейную функцию.
Начнём с простейших линейных неравенств. Голубая мечта любого двоечника – координатная плоскость, на которой нет ничегошеньки:
Как известно, ось абсцисс задаётся уравнением – «игрек» всегда (при любом значении «икс») равняется нулю
Рассмотрим неравенство . Как его понимать неформально? «Игрек» всегда (при любом значении «икс») положителен. Очевидно, что данное неравенство определяет верхнюю полуплоскость – ведь там и находятся все точки с положительными «игреками».
В том случае, если неравенство нестрогое , к верхней полуплоскости дополнительно добавляется сама ось .
Аналогично: неравенству удовлетворяют все точки нижней полуплоскости, нестрогому неравенству соответствует нижняя полуплоскость + ось .
На втором шаге рассмотрим неравенства, в которых отсутствует одна из переменных.
Отсутствует «игрек»:
Или отсутствует «икс»:
С такими неравенствами можно разобраться двумя способами, пожалуйста, рассмотрите оба подхода. Попутно вспомним-закрепим школьные действия с неравенствами, уже разобранные на уроке Область определения функции.
Решить линейные неравенства:
Что значит решить линейное неравенство?
Решить линейное неравенство – это значит найти полуплоскость, точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое). Решение, как правило, графическое.
Удобнее сразу выполнить чертёж, а потом всё закомментировать:
а) Решим неравенство
Способ весьма напоминает историю с координатными осями, которую мы рассмотрели выше. Идея состоит в преобразовании неравенства – чтобы в левой части оставить одну переменную без всяких констант, в данном случае – переменную «икс».
Правило: В неравенстве слагаемые переносятся из части в часть со сменой знака, при этом знак САМОГО неравенства не меняется (например, если был знак «меньше», то так и останется «меньше»).
Переносим «пятёрку» в правую часть со сменой знака:
Правило: Обе части неравенства можно умножить (разделить) на ПОЛОЖИТЕЛЬНОЕ число, при этом знак неравенства не меняется.
Умножаем обе части неравенства на :
Теперь чертим прямую (синяя пунктирная линия). Прямая проведена пунктиром по той причине, что неравенство строгое, и точки, принадлежащие данной прямой, заведомо не будут входить в решение.
Каков смысл неравенства ? «Икс» всегда (при любом значении «игрек») меньше, чем . Очевидно, что этому утверждению удовлетворяют все точки левой полуплоскости. Данную полуплоскость, в принципе, можно заштриховать, но я ограничусь маленькими синими стрелочками, чтобы не превращать чертёж в художественную палитру.
Это универсальный способ. ЧИТАЕМ ОЧЕНЬ ВНИМАТЕЛЬНО!
Сначала чертим прямую . Для ясности, кстати, уравнение целесообразно представить в виде .
Теперь выбираем любую точку плоскости, не принадлежащую прямой. В большинстве случаев, самая лакомая точка, конечно . Подставим координаты данной точки в неравенство :
Получено неверное неравенство (простыми словами, неправда), значит, точка не удовлетворяет неравенству .
Ключевое правило нашей задачи: – Если какая-либо точка полуплоскости (не принадлежащая прямой) не удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости не удовлетворяют данному неравенству. – Если какая-либо точка полуплоскости (не принадлежащая прямой) удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости удовлетворяют данному неравенству.
Можете протестировать: любая точка справа от прямой не будет удовлетворять неравенству .
Какой вывод из проведённого опыта с точкой ? Деваться некуда, неравенству удовлетворяют все точки другой – левой полуплоскости (тоже можете проверить).
б) Решим неравенство
Преобразуем неравенство:
Правило: Обе части неравенства можно умножить (разделить) на ОТРИЦАТЕЛЬНОЕ число, при этом знак неравенства МЕНЯЕТСЯ на противоположный (например, если был знак «больше либо равно», то станет «меньше либо равно»).
Умножаем обе части неравенства на :
Начертим прямую (красный цвет), причём, начертим сплошной линией, так как неравенство у нас нестрогое, и прямая заведомо принадлежит решению.
Проанализировав полученное неравенство , приходим к выводу, что его решением является нижняя полуплоскость (+ сама прямая).
Подходящую полуплоскость штрихуем либо помечаем стрелочками.
Начертим прямую . Выберем произвольную точку плоскости (не принадлежащую прямой), например, и подставим её координаты в наше неравенство :
Получено верное неравенство, значит, точка удовлетворяет неравенству , и вообще – ВСЕ точки нижней полуплоскости удовлетворяют данному неравенству.
Здесь подопытной точкой мы «попали» в нужную полуплоскость.
Решение задачи обозначено красной прямой и красными стрелочками.
Лично мне больше нравится первый способ решения, поскольку второй таки более формален.
Решить линейные неравенства:
Это пример для самостоятельного решения. Постарайтесь решить задачу двумя способами (к слову, это хороший способ проверки решения). В ответе в конце урока будет только итоговый чертёж.
Думаю, после всех проделанных в примерах действий вам придётся на них жениться не составит труда решить простейшее неравенство вроде и т.п.
Переходим к рассмотрению третьего, общего случая, когда в неравенстве присутствуют обе переменные:
Как вариант, свободный член «цэ» может быть нулевым.
Найти полуплоскости, соответствующие следующим неравенствам:
Решение: Здесь используется универсальный метод решения с подстановкой точки.
а) Построим уравнение прямой , при этом линию следует провести пунктиром, так как неравенство строгое и сама прямая не войдёт в решение.
Выбираем подопытную точку плоскости, которая не принадлежит данной прямой, например, , и подставим её координаты в наше неравенство:
Получено неверное неравенство, значит, точка и ВСЕ точки данной полуплоскости не удовлетворяют неравенству . Решением неравенства будет другая полуплоскость, любуемся синими молниями:
б) Решим неравенство . Сначала построим прямую. Это сделать несложно, перед нами каноничная прямая пропорциональность . Линию проводим сплошняком, так как неравенство нестрогое.
Выберем произвольную точку плоскости, не принадлежащую прямой . Хотелось бы снова использовать начало координат, но, увы, сейчас оно не годится. Поэтому придётся работать с другой подругой. Выгоднее взять точку с небольшими значениями координат, например, . Подставим её координаты в наше неравенство:
Получено верное неравенство, значит, точка и все точки данной полуплоскости удовлетворяют неравенству . Искомая полуплоскость помечена красными стрелочками. Кроме того, в решение входит сама прямая .
Найти полуплоскости, соответствующие неравенствам:
Это пример для самостоятельного решения. Полное решение, примерный образец чистового оформления и ответ в конце урока.
Разберём обратную задачу:
а) Дана прямая . Определить полуплоскость, в которой находится точка , при этом сама прямая должна входить в решение.
б) Дана прямая . Определить полуплоскость, в которой находится точка . Сама прямая не входит в решение.
Решение: здесь нет необходимости в чертеже, и решение будет аналитическим. Ничего трудного:
а) Составим вспомогательный многочлен и вычислим его значение в точке : . Таким образом, искомое неравенство будет со знаком «меньше». По условию прямая входит в решение, поэтому неравенство будет нестрогим:
б) Составим многочлен и вычислим его значение в точке : . Таким образом, искомое неравенство будет со знаком «больше». По условию прямая не входит в решение, следовательно, неравенство будет строгим: .
Ответ:
Творческий пример для самостоятельного изучения:
Даны точки и прямая . Среди перечисленных точек найти те, которые вместе с началом координат лежат по одну сторону от заданной прямой.
Небольшая подсказка: сначала нужно составить неравенство, определяющее полуплоскость, в которой находится начало координат. Аналитическое решение и ответ в конце урока.
Системы линейных неравенств
Система линейных неравенств – это система, составленная из линейных неравенств. …Обожаю такие определения, прямо в стиле известного политика и боксёра :).Вот уж действительно просто и доступно! А если серьёзно, то не хочется приводить громоздкое определение и систему в общем виде, лучше сразу перейдём к насущным вопросам:
Что значит решить систему линейных неравенств?
Решить систему линейных неравенств – это значит найти множество точек плоскости, которые удовлетворяют каждому неравенству системы.
В качестве простейших примеров рассмотрим системы неравенств, определяющих координатные четверти прямоугольной системы координат («рисунок двоечников» находится в самом начале урока):
Система неравенств задаёт первую координатную четверть (правая верхняя). Координаты любой точки первой четверти, например, и т.д. удовлетворяют каждому неравенству данной системы.
Аналогично: – система неравенств задаёт вторую координатную четверть (левая верхняя); – система неравенств задаёт третью координатную четверть (левая нижняя); – система неравенств задаёт четвёртую координатную четверть (правая нижняя).
Система линейных неравенств может не иметь решений, то есть, быть несовместной. Снова простейший пример: . Совершенно очевидно, что «икс» не может одновременно быть больше трёх и меньше двух.
Решением системы неравенств может являться прямая, например: . Лебедь, рак, без щуки, тянут воз в две разные стороны. Да воз и ныне там – решением данной системы является прямая .
Но самый распространённый случай, когда решением системы является некоторая область плоскости. Область решений может быть не ограниченной (например, координатные четверти) либо ограниченной. Ограниченная область решений называется многоугольником решений системы.
Решить систему линейных неравенств
На практике в большинстве случаев приходится иметь дело с нестрогими неравенствами, поэтому оставшуюся часть урока водить хороводы будут именно они.
Решение: то, что неравенств многовато, пугать не должно. Сколько может быть неравенств в системе? Да сколько угодно. Главное, придерживаться рационального алгоритма построения области решений:
1) Сначала разбираемся с простейшими неравенствами. Неравенства определяют первую координатную четверть, включая границу из координатных осей. Уже значительно легче, так как область поиска значительно сузилась. На чертеже сразу отмечаем стрелочками соответствующие полуплоскости (красные и синие стрелки)
2) Второе по простоте неравенство – здесь отсутствует «игрек». Во-первых, строим саму прямую , а, во-вторых, после преобразования неравенства к виду , сразу становится понятно, что все «иксы» меньше, чем 6. Отмечаем зелёными стрелками соответствующую полуплоскость. Ну что же, область поиска стала ещё меньше – такой не ограниченный сверху прямоугольник.
3) На последнем шаге решаем неравенства «с полной амуницией»: . Алгоритм решения мы подробно рассмотрели в предыдущем параграфе. Вкратце: сначала строим прямую, потом с помощью подопытной точки находим нужную нам полуплоскость.
Встаньте, дети, встаньте в круг:
Область решений системы представляет собой многоугольник , на чертеже он обведён малиновой линией и заштрихован. Перестарался немного =) В тетради область решений достаточно либо заштриховать, либо жирнее обвести простым карандашом.
Любая точка данного многоугольника удовлетворяет КАЖДОМУ неравенству системы (для интереса можете проверить).
Ответ: решением системы является многоугольник .
При оформлении на чистовик неплохо бы подробно расписать, по каким точкам вы строили прямые (см. урок Графики и свойства функций), и как определяли полуплоскости (см. первый параграф данного урока). Однако на практике в большинстве случаев вам зачтут и просто правильный чертёж. Сами же расчёты можно проводить на черновике или даже устно.
Помимо многоугольника решений системы, на практике, пусть и реже, встречается открытая область. Попытайтесь разобрать следующий пример самостоятельно. Хотя, точности ради, пыток тут никаких – алгоритм построения такой же, просто область получится не ограниченной.
Решить систему
Решение и ответ в конце урока. У вас, скорее всего, будут другие буквенные обозначения вершин полученной области. Это не принципиально, главное, правильно найти вершины и правильно построить область.
Не редкость, когда в задачах требуется не только построить область решений системы, но и найти координаты вершин области. В двух предыдущих примерах координаты данных точек были очевидны, но на практике всё бывает далеко не айс:
Решить систему и найти координаты вершин полученной области
Решение: изобразим на чертеже область решений данной системы. Неравенство задаёт левую полуплоскость с осью ординат, и халявы тут больше нет. После расчётов на чистовике/черновике или глубоких мыслительных процессов, получаем следующую область решений:
Область решений представляет собой многоугольник . Теперь нужно найти координаты вершин полученной области. Здесь ясно прорисовались координаты только двух точек: . Остаётся решить вопрос с точками .
Нетрудно заметить, что вершины являются точками пересечением прямых. Как найти точку пересечения двух прямых, мы рассмотрели на уроке Задачи с прямой на плоскости.
Найдём координаты вершины :
Примечание: из второго уравнения системы почленно вычтено первое уравнение. Более подробно о методе можно прочитать в статье Как решить систему уравнений?
Найдём координаты точки :
Примечание: второе уравнение системы умножено на 3, затем уравнения сложены почленно.
Для красоты координаты точек тоже можно найти аналитическим методом:
Ответ: область решений системы представляет собой многоугольник с вершинами в точках .
Кто из вас попадёт в «десятку»? Заключительный пример урока для самостоятельного решения:
Найти область решений системы и координаты вершин полученной области
И опять же, буквенные обозначения вершин многоугольника у нас могут отличаться. У меня будет точка «цэ», а у вас эта же вершина может быть обозначена через «дэ».
Мы рассмотрели примеры средней степени сложности, чего вполне достаточно. В ряде задач, например, в задаче линейного программирования коэффициенты неравенств обычно велики, и приходится возиться (иногда долго) с подбором масштаба и построением самих прямых.
Пример 2: Ответ:
Пример 4: Решение: а) Построим прямую . Выберем произвольную точку плоскости, не принадлежащую данной прямой, например, и подставим её координаты в неравенство:
Получено неверное неравенство, значит, неравенство задаёт полуплоскость, которой не принадлежит точка , при этом прямая не входит в решение. б) Построим прямую . Выберем произвольную точку плоскости, не принадлежащую данной прямой, например, и подставим её координаты в неравенство:
Получено верное неравенство, значит, неравенство задаёт полуплоскость, в которой находится точка , при этом прямая входит в решение. Ответ:
Пример 6: Решение: Составим многочлен и вычислим его значение в точке : , следовательно, искомые точки должны удовлетворять неравенству (а значит, и условию ). Вычислим значения многочлена в каждой из пяти точек:
Условию удовлетворяют точки . Ответ: в одной полуплоскости с началом координат лежат точки .
Пример 8: Решение: изобразим на чертеже область решений, соответствующую заданной системе линейных неравенств:
Ответ: область решений системы ограничена ломаной и лучами .
Пример 10: Решение: изобразим на чертеже область решений данной системы неравенств:
Область решений представляет собой многоугольник . Найдём координаты вершин полученной области:
Ответ: область решений системы представляет собой многоугольник с вершинами в точках .