Что значит трехмерное пространство
Трёхмерное пространство
Трёхме́рное простра́нство — геометрическая модель материального мира, в котором мы находимся. Это пространство называется трёхмерным, так как оно имеет три однородных измерения — высоту, ширину и длину, то есть трёхмерное пространство описывается тремя единичными ортогональными векторами.
Понимание трёхмерного пространства людьми, как считается, развивается ещё в младенчестве, и тесно связано с координацией движений человека. Визуальная способность воспринимать окружающий мир органами чувств в трёх измерениях называется глубиной восприятия.
В аналитической геометрии каждая точка трёхмерного пространства описывается как набор из трёх величин — координат. Задаются три взаимно перпендикулярных координатных оси, пересекающихся в начале координат. Положение точки задаётся относительно этих трёх осей заданием упорядоченной тройки чисел. Каждое из этих чисел задаёт расстояние от начала отсчёта до точки, измеренное вдоль соответствующей оси, что равно расстоянию от точки до плоскости, образованной другими двумя осями.
Другой взгляд даёт линейная алгебра, где важную роль играет понятие линейной независимости. Пространство трёхмерно по той причине, что высота коробки не зависит от её длины и ширины. На языке линейной алгебры пространство трёхмерно, потому что каждая точка может быть задана комбинацией из трёх линейно независимых векторов. В этих терминах пространство-время четырёхмерно, потому что положение точки во времени не зависит от её положения в пространстве.
Нульмерное, одномерное и двухмерное пространства могут рассматриваться как располагающиеся в трёхмерном пространстве; само оно может считаться частью модели четырёхмерного пространства (четвёртым измерением континуума, как правило, называют время — неоднородное качество по отношению к пространственной мерности). [3]
Трёхмерное пространство
Из Википедии — свободной энциклопедии
Трёхме́рное простра́нство — геометрическая модель материального мира. Это пространство называется трёхмерным, так как оно имеет три однородных измерения — длину, ширину и высоту, то есть трёхмерное пространство описывается тремя единичными ортогональными векторами.
Понимание трёхмерного пространства людьми, как считается, развивается ещё в младенчестве, и тесно связано с координацией движений человека. Визуальная способность воспринимать окружающий мир органами чувств в трёх измерениях называется восприятием глубины.
В аналитической геометрии каждая точка трёхмерного пространства описывается как набор из трёх величин — координат. Задаются три взаимно перпендикулярных координатных оси, пересекающихся в начале координат. Положение точки задаётся относительно этих трёх осей заданием упорядоченной тройки чисел. Каждое из этих чисел задаёт расстояние от начала отсчёта до точки, измеренное вдоль соответствующей оси, что равно расстоянию от точки до плоскости, образованной другими двумя осями.
Другой взгляд даёт линейная алгебра, где важную роль играет понятие линейной независимости. Пространство трёхмерно по той причине, что высота коробки не зависит от её длины и ширины. На языке линейной алгебры пространство трёхмерно, потому что каждая точка может быть задана комбинацией из трёх линейно независимых векторов. В этих терминах пространство-время четырёхмерно, потому что положение точки во времени не зависит от её положения в пространстве.
Трехмерный мир, в котором мы не живем
Еще древние греки превратили математику из эмпирической науки в дедуктивную, потребовав вывода доказательств ее утверждений из основных понятий и исключив ссылку на опыт в качестве аргумента.
Чистая математика исследует формы и отношения в отвлечении от материального содержания. Ее непосредственным предметом оказываются, например, не те или иные тела шарообразной формы, а «идеальный шар», не те или иные совокупности предметов и даже не отдельные числа, а целые числа вообще и т. п.
Однако при всей абстрактности этой науки никто из математиков, по-видимому, не сомневался в том, что все их понятия, теоремы и формулы выражают реальные количественные и пространственные отношения. Математическая геометрия была теорией реального пространства, как позже механика явилась теорией движения
Математика — наука, изучающая
количественные и пространственные
формы и отношения действительности
Академик А. Д. Александров
Окружающий нас мир трехмерен. Мы привыкли к этой мысли с рождения — каждый человек знает, что такое высота, длина и ширина, три основных измерения окружающего нас пространства. В зависимости от традиций, принятых в разных странах, размеры предметов измеряют в метрах, футах, ли, лье и других эталонных единицах длины. Для наших дальнейших рассуждений выберем немного необычную единицу длины. Ею будет служить один световой год (1 св. г.), т. е. расстояние, проходимое лучом света за один календарный год. В традиционных мерах длины это составляет невообразимую величину — примерно 9,46•10 12 километров.
Если из окружающего нас пространства мысленно вырезать куб с ребром, равным 1 св. году, то внутри благополучно разместится дом, в котором мы живем, земной шар, Солнечная система… В общем, все, что необходимо для нормальной жизни человека. Для удобства назовем рассмотренный нами куб единичным кубом. А теперь отметим следующий очевидный факт. Несмотря на громадные размеры, наш единичный куб — лишь мельчайшая частица окружающего мира.
Кстати сказать, в этом определении размеры самого куба не задаются — вовсе не обязательно использовать кубы больших размеров. С таким же успехом можно утверждать, что каждая точка содержится в кубе, ребро которого не превосходит по длине, скажем, один микрон (10 —6 см).
Все сказанное выше кратко можно выразить следующими словами: окружающий нас мир является трехмерным евклидовым многообразием. А теперь попробуем ответить на следующий вопрос: как устроен мир за пределами единичного куба, в котором находится наш дом — наша Солнечная система?
Трехмерный тор и другие
Если на минуту вообразить, что окружающее нас пространство бесконечно по всем направлениям, то ответ на вопрос о строении окружающего нас мира даст следующая теорема Адамара:
«Бесконечно протяженное по всем направлениям трехмерное евклидово многообразие М 3 совпадает с евклидовым пространством E 3 ».
Евклидово пространство Е 3 с прямоугольной системой координат всем хорошо известно, поэтому не будем подробно останавливаться на изучении его свойств.
Для того же, чтобы сделать наши рассуждения более содержательными и интересными, предположим другой вариант: окружающий нас мир замкнут, т. е. имеет конечные размеры и не имеет края. Другими словами, зададимся вопросом, как устроены замкнутые трехмерные евклидовы многообразия, или, другими словами, евклидовы формы. Полный ответ на этот вопрос дает теорема, доказанная Дж. Вольфом (1982):
Существует ровно десять трехмерных евклидовых форм. Причем шесть из них представляют собой ориентируемые, а остальные четыре — неориентируемые многообразия.
Все евклидовые формы строятся схожим образом, единственное — для построения некоторых из них нужно использовать куб, а для других — правильную шестиугольную призму.
Для этого в центре грани А трехмерного тора поместим космический корабль, летящий со скоростью света, и заставим его стартовать в вертикальном направлении. Ровно через год космический корабль, продолжая двигаться по прямой, вернется в исходную точку. Теперь эта точка будет находиться в центре грани А’, которая, по условию, отождествлена с гранью А. В результате эксперимента обнаружим, что в трехмерном торе Т 3 существует замкнутая прямая линия l длиной в один световой год.
Поставим еще один аналогичный эксперимент. Заставим космический корабль стартовать из точки у, лежащей в грани А на расстоянии 1 км от ее центра. Через год корабль благополучно вернется в точку у. Вывод из второго эксперимента — через точку у проходит замкнутая прямая длиной 1 световой год, параллельная прямой l.
Многообразные многообразия
Как уже было замечено, все рассмотренные выше многообразия обладают евклидовой геометрией. Что это означает и какие еще геометрии существуют?
Наиболее известными и употребимыми в общечеловеческой практике являются евклидова, сферическая и гиперболическая геометрии. Напомним, что сферическую геометрию иногда называют геометрией Римана, а гиперболическую — геометрией Лобачевского. В трехмерном пространстве, кроме трех указанных, существует еще пять так называемых синтетических геометрий.
В соответствии с тем, какие геометрические законы действуют на трехмерном многообразии, будем называть его соответственно евклидовым, сферическим, гиперболическим или синтетическим.
Евклидовы многообразия мы уже рассмотрели выше. Что до остальных, то более двадцати лет назад У. Терстон (1978) доказал замечательную теорему: почти все трехмерные многообразия являются гиперболическими, то есть подчиняются законам геометрии Лобачевского. За этот результат в 1983 году он был удостоен Филдсовской премии — самой престижной награды для математиков.
Сферические многообразия бывают как трехмерные, так и многомерные (Вольф, 1982). В пространстве любой размерности существует конечное число типов таких многообразий. Синтетических многообразий очень мало (Thurston, 1978; Dunbar, 1981; Терстон, 2001) в отличие от оставшегося класса гиперболических многообразий. Последний неисчерпаемо широк и классификация его к настоящему времени не завершена.
Сферические многообразия
Все трехмерные сферические многообразия — ориентируемы. Это означает, что по какой бы замкнутой траектории не летал космический корабль с непрерывно вращающимся пропеллером, по возвращении в точку старта его пропеллер вращается в ту же сторону, что и в момент старта.
Третий, и пожалуй, самый нетривиальный пример сферического многообразия — сферическое пространство додекаэдра Пуанкаре или, для краткости, сфера Пуанкаре.
Сфера Пуанкаре удивительным образом связана с самыми различными разделами математики — геометрией, топологией, теорией групп, теорией катастроф, теорией узлов и другими (Кирби, Шарлеман, 1982).
Все остальные сферические многообразия, получаемые по единой схеме, представляют собой так называемые линзовые и призматические пространства.
Гиперболические многообразия
Первое трехмерное замкнутое гиперболическое многообразие было построено немецким математиком Ф. Лебеллем в 1931 г. Однако построение его было достаточно сложным, поэтому двумя годами позже Х. Зейферт и К. Вебер предложили элегантную конструкцию гиперболического пространства додекаэдра.
С точки зрения математики наиболее сложная часть проблемы построения состоит в доказательстве существования этого гиперболического додекаэдра в пространстве Лобачевского. Положительный ответ на этот вопрос дает фундаментальная теорема Е. М. Андреева (1970), в которой сформулированы необходимые и достаточные условия для существования выпуклых гиперболических многогранников. Эта теорема служит одним из краеугольных камней современной теории гиперболических многообразий, созданной У. Терстоном.
Конструируем многообразия из многогранников
Рассмотрим прямоугольный многогранник Р, все двугранные (и плоские) углы которого равны 90°. В евклидовом пространстве в качестве такого многогранника можно взять куб, в сферическом — тетраэдр, а в гиперболическом — шестиугольную призму Лебелля, боковая поверхность которой состоит из 12-ти пятиугольников.
Из теоремы Андреева следует, что любой многогранник, у которого нет треугольных и четырехугольных граней, а в каждой вершине сходится ровно по три ребра, может быть реализован как прямоугольный многогранник в пространстве Лобачевского. Шестиугольная призма Лебелля, очевидно, удовлетворяет этим условиям.
Для построения гиперболических многообразий используется способ, заключающийся в окраске смежных граней многогранника в разные цвета и последующего отождествления соответствующих граней, окрашенных в один цвет, у нескольких одинаковых экземпляров многогранников. Такой способ построения многообразий был впервые реализован Ф. Лебеллем (Loebell, 1931) для шестиугольной призмы, японским математиком М. Такахаши (Takahashi, 1985) — для правильного прямоугольного додекаэдра и А. Ю. Весниным (1987) — для произвольного прямоугольного многогранника Р.
При этом отметим, что все многообразия, построенные по окраске многогранника в четыре цвета, ориентируемы. Однако доказано, что окрашивая грани многогранника Р в пять, шесть или семь цветов, по аналогичной схеме можно построить и неориентируемые многообразия (Mednykh, 1992).
Остановимся еще на одном свойстве прямоугольных многогранников. Пусть D — правильный прямоугольный додекаэдр в пространстве Лобачевского. Испанский математик Х.-М. Монтезинос (Hilden et al., 1987) доказал следующую замечательную теорему:
«Любое замкнутое трехмерное многообразие может быть получено из конечного числа экземпляров многогранника D попарным отождествлением их граней».
Отметим, что в теореме Монтезиноса все грани склеенных многогранников — конгруэнтны, а все ребра имеют одинаковую длину. При этом каждое ребро окружено четырьмя, двумя или одним додекаэдром. Первую ситуацию легко представить: четыре прямоугольных додекаэдра склеены друг за другом вокруг общего ребра и образуют суммарный угол, равный 4•90° = 360°. Во втором случае пара смежных граней одного додекаэдра отождествляется с парой смежных граней другого додекаэдра. Суммарный двугранный угол вокруг ребра, принадлежащего двум додекаэдрам, в этом случае равен 2•90° = 180°. Третий вариант легко создать, отождествляя смежные грани одного додекаэдра поворотом на угол 90°.
Наличие ребер второго и третьего типа превращает многообразие в многообразие с особенностями, или орбифолд. В этом случае указанные ребра образуют сингулярное множество орбифолда. Заметим, что всюду, кроме сингулярных ребер, многообразие обладает геометрией Лобачевского.
Трехмерные орбифолды
Евклидовы орбифолды
Для всякого трехмерного евклидова орбифолда существует фундаментальное множество — криволинейный многогранник, из которого заданный орбифолд можно получить, попарно отождествляя (склеивая) определенные его грани.
Примерами евклидовых орбифолдов могут служить так называемые Борромеевы кольца или трехмерная сфера с сингулярным множеством узел «восьмерка».
Всего существует 230 замкнутых трехмерных евклидовых орбифолдов — по числу кристаллографических групп, открытых в конце прошлого века русским ученым Е. С. Федоровым. Строение евклидовых орбифолдов было полностью описано в докторской диссертации У. Данбара, защищенной в 1981 г. в Принстонском университете — крупнейшем математическом центре мира.
Сферические орбифолды
Сингулярным множеством сферических орбифолдов может служить так называемый рациональный узел или зацепление. Им может оказаться также заузленный граф, из каждой вершины которого выходит по три ребра. В частности, сингулярным множеством сферического орбифолда будет являться скелет тетраэдра (ребра + вершины), расположенный в трехмерной сфере.
q > l. В сферическом пространстве S ³ рассмотрим линзу с углом, равным π/р и поделим ее ребро точками 1,2. 2р на 2р равных частей. Соединим пары точек <р, 2р>и сферическими дугами, лежащими по разные стороны линзы. Поворотами на 180° в построенных дугах отождествим половины граней линзы A,A’ и B,B’. В случаях p/q = 2/1 мы получим, соответственно, зацепление Хопфа, состоящее из двух сцепленных окружностей; в случае p/q = 3/1 — узел «трилистник»; при p/q = 5/3 — уже описанный узел «восьмерка»» border=»0″ alt=»Пусть p/q — несократимая дробь с условием p > q > l. В сферическом пространстве S ³ рассмотрим линзу с углом, равным π/р и поделим ее ребро точками 1,2. 2р на 2р равных частей. Соединим пары точек <р, 2р>и
сферическими дугами, лежащими по разные стороны линзы. Поворотами на 180° в построенных дугах отождествим половины граней линзы A,A’ и B,B’. В случаях p/q = 2/1 мы получим, соответственно, зацепление Хопфа, состоящее из двух сцепленных окружностей; в случае p/q = 3/1 — узел «трилистник»; при p/q = 5/3 — уже описанный узел «восьмерка»» />
При этом следует иметь ввиду, что сильные заузливания тетраэдра могут испортить сферическую геометрию и заставить орбифолд обладать евклидовой, гиперболической или одной из синтетических геометрий.
Недавно австралийцами профессором К. Ходжсоном и его учеником Д. Хеардом создана компьютерная программа, позволяющая вычислять объемы заузленных графов, вложенных в трехмерную сферу (Hodgson and Heard, 2005). Полная классификация трехмерных орбифолдов во всех геометриях, кроме гиперболической, сделана в работах У. Данбара. Как и в случае многообразий, гиперболическая геометрия является наиболее богатой, и полное описание орбифолдов в ней до сих пор не получено.
Гиперболические орбифолды
Из теоремы Монтезиноса следует, что каждое трехмерное многообразие может быть превращено в гиперболический орбифолд, если внутрь его поместить подходящее сингулярное множество. Поскольку существует бесконечно много различных многообразий, отсюда следует, что существует также бесконечно много гиперболических орбифолдов.
Один из простейших гиперболических орбифолдов — трехмерная сфера с сингулярным множеством Борромеевы кольца с индексом сингулярности 4. Другой пример — сильно заузленный тетраэдр, все ребра которого имеют индекс сингулярности два. Доказательство таких фактов обычно достаточно сложно и может быть проведено с помощью теорем о геометризации, полученных У. Терстоном, его учениками и последователями. Общий принцип доказательства состоит в следующем: если орбифолд не является евклидовым, сферическим или синтетическим и удовлетворяет некоторым простым геометрическим условиям, то он — гиперболический.
Изменения, произошедшие в математике за последние более чем полтора века, не только необозримо расширили ее содержание, но и изменили его принципиально. В предмет математики сейчас входит любая структура, которую можно исследовать путем логического рассуждения с достаточной строгостью и богатством выводов. Найдет ли она применение и прообраз в действительности — это уже вопрос не к математике.
Понятно, что фактически наибольшее развитие получают те теории, которые находят существенные применения в самой математике и тем более за ее пределами. Хотя опыт развития науки уже достаточное число раз показал, как самые отвлеченные теории находили потом чрезвычайно существенные приложения. Но для самой чистой математики это в принципе безразлично. Лучше всего творческое кредо новой математики выразил создатель теории множеств Г. Кантор, гордо зявив: «Сущность математики. в ее свободе».
Винберг Э. Б. О неевлидовой геометрии, Соросовский образовательный журнал, № 3, 1996, С. 104—109.
Тёрстон У. Трехмерная геометрия и топология, М: МЦНМО, 2001 (Перевод с англ. под ред. О. В. Шварцмана).
Hodgson C., Heard D. Computer program “Orb”, August 2005, http://www.ms.unimelb.edu.au/
Работа поддержана грантом РФФИ (№ 06-01-00153) и INTAS (№ 03-01-3663)
Автор и редакция выражает искреннюю благодарность Н. В. Абросимову (вед. инженеру Института математики им. С. Л. Соболева СО РАН, студенту 6-го курса НГУ), оказавшему неоценимую помощь при подготовке публикации
Почему мы живем в трехмерном пространстве
Мы живем в трехмерном мире: длина, ширина и глубина. Некоторые могут возразить: «А как же четвертое измерение — время?» Действительно, время — это тоже измерение. Но вот вопрос, почему пространство измеряется в трех измерениях — загадка для ученых. Новое исследование объясняет, почему мы живем в мире 3D.
Вопрос о том, почему пространство трехмерно, мучил ученых и философов с античных времен. Действительно, почему именно три измерения, а не десять или, скажем, 45?
В целом, пространство-время четырехмерно (или 3+1-мерно): три измерения образуют пространство, четвертым измерением является время. Существуют также философские и научные теории о многомерности времени, которые предполагают, что измерений времени на самом деле больше, чем кажется: привычная нам стрела времени, направленная из прошлого в будущее через настоящее — всего лишь одна из возможных осей. Это делает возможными различные научно-фантастические проекты, вроде путешествий во времени, а также создает новую, многовариантную космологию, которая допускает существование параллельных вселенных. Однако существование дополнительных временных измерений пока не доказано научно.
Вернемся в наше, 3+1-мерное измерение. Нам хорошо известно, что измерение времени связано со вторым законом термодинамики, который гласит, что в замкнутой системе — такой, как наша Вселенная — энтропия (мера хаоса) всегда возрастает. Уменьшаться вселенский беспорядок не может. Поэтому время всегда направлено вперед — и никак иначе.
В новой статье, опубликованной в EPL, исследователи предположили, что второй закон термодинамики может также объяснить, почему пространство трехмерно.
«Ряд исследователей в области науки и философии обращались к проблеме (3 + 1)-мерной природы пространства-времени, обосновывая выбор именно этого числа его стабильностью и возможностью поддержания жизни», — рассказал соавтор исследования Джулиан Гонсалес-Айала из Национального политехнического института в Мексике и университета Саламанки в Испании порталу Phys.org. «Ценность нашей работы заключается в том, что мы представляем рассуждения, основанные на физической модели размерности Вселенной с подходящим и разумным сценарием пространства-времени. Мы первые, кто заявил, что число «три» в размерности пространства возникает в качестве оптимизации физической величины».
Ранее ученые обращали внимание на размерность Вселенной в связи с так называемым атропным принципом: «Мы видим Вселенную такой, потому что только в такой Вселенной мог возникнуть наблюдатель, человек». Трехмерность пространства объяснялась возможностью поддержания Вселенной в том виде, в каком мы её наблюдаем. Если бы во Вселенной было множество измерений, по ньютоновскому закону тяготения не были бы возможны устойчивые орбиты планет и даже атомная структура вещества: электроны падали бы на ядра.
В данном исследовании ученые пошли другим путем. Они предположили, что пространство трехмерно из-за термодинамической величины — плотности свободной энергии Гельмгольца. Во Вселенной, заполненной излучением, эту плотность можно рассматривать как давление в пространстве. Давление зависит от температуры Вселенной и от количества пространственных измерений.
Исследователи показали, что могло происходить в первые доли секунды после Большого взрыва, называемые Планковской эпохой. В момент, когда Вселенная начала охлаждаться, плотность Гельмгольца достигла своего первого максимума. Тогда возраст Вселенной составлял долю секунды, а пространственных измерений было ровно три. Ключевая мысль исследования заключается в том, что трехмерное пространство было «заморожено», как только плотность Гельмгольца достигла своего максимального значения, которое запрещает переход в другие измерения.
На рисунке ниже изображено, как это происходило. Слева — плотность свободной энергии Гельмгольца (е) достигает своего максимального значения при температуре Т = 0,93, которое возникает, когда пространство было трехмерным (n=3). S и U представляют плотности энтропии и плотность внутренней энергии, соответственно. Справа показано, что перехода к многомерности не происходит при температуре ниже 0,93, что соответствует трем измерениям.
Это произошло вследствие второго закона термодинамики, который допускает переходы в более высокие измерения только тогда, когда температура выше критического значения — ни градусом меньше. Вселенная непрерывно расширяется, и элементарные частицы, фотоны, теряют энергию — поэтому наш мир постепенно охлаждается: Сейчас температура Вселенной гораздо ниже уровня, предполагающего переход из 3D-мира в многомерное пространство.
Исследователи поясняют, что пространственные измерения похожи на состояния вещества, а переход из одного измерения в другое напоминает фазовый переход — такой, как плавление льда, которое возможно лишь при очень высоких температурах.
«В процессе охлаждения ранней Вселенной и после достижения первой критической температуры, принцип приращения энтропии для замкнутых систем мог запретить определенные изменения размерности», — комментируют исследователи.
Это предположение по-прежнему оставляет место для более высоких измерений, которые существовали в Планковскую эпоху, когда Вселенная была еще более горячей, чем это было при критической температуре.
Дополнительные измерения присутствуют во многих космологических моделях — в первую очередь, в теории струн. Это исследование может помочь объяснить, почему в некоторых из этих моделей дополнительные измерения исчезли или остались такими же крошечными, как были в первые доли секунды после Большого взрыва, в то время как 3D-пространство продолжает расти во всей наблюдаемой Вселенной.
В будущем исследователи планируют улучшить свою модель, чтобы включить дополнительные квантовые эффекты, которые могли возникнуть в первую долю секунды после Большого взрыва. Кроме того, результаты дополненной модели могут также служить ориентиром для исследователей, работающих на других космологических моделях, таких как квантовая гравитация.