Что значит трансформатор обладает обратимостью

Обратимость электрических машин

Основные положения принципа обратимости электрических машин

Таким образом, мы получим электрический двигатель, который, в отличие от генератора преобразует электрическую энергию в механическую.

По закону Ленца, индуцированный ток всегда имеет такое направление, при котором возникающая электромагнитная сила стремится препятствовать тому изменению (движению), благодаря которому индуцируется ток.

Что значит трансформатор обладает обратимостью

Рис. 1. Простейший генератор переменного тока

Что значит трансформатор обладает обратимостью

Рис. 2. Простейший генератор постоянного тока

Что значит трансформатор обладает обратимостью

Рис. 3. Генератор дает переменную э.д.с., если концы рамки подключены к кольцам. Если же они подключены к полукольцам (пластинам коллектора), то ток в цепи будет пульсирующим.

На основании упомянутых выше законов и принципа работы простейших электрических машин можем сформулировать следующие основные положения энергопреобразования:

1) непосредственное взаимообратное преобразование механической и электрической энергии в индуктивных электрических машинах возможно лишь тогда, когда последняя является энергией переменного тока,

2) для такого энергопреобразования необходим электрический контур с изменяющейся индуктивностью (в нашем случае это поворачивающийся в магнитном поле виток),

4) любая электрическая машина энергетически обратима, т. е. принципиально равноценно может работать и как генератор, и как двигатель,

5) поскольку для проявления закона электромагнитной индукции необходимо лишь относительное перемещение проводника и магнитного поля, то любая электрическая машина кинематически обратима, т. е. у нее может вращаться или якорь или индуктор.

Возможно ли использование двигателя вместо генератора на практике

По закону Э. X. Ленца индуктированный ток в замкнутом электрическом контуре всегда имеет такое направление, при котором возникающая электромагнитная сила стремится препятствовать тому изменению (движению), благодаря которому индуктируется электрический ток. На этом основании всякая индуктивная электрическая машина «энергетически обратима», т. е. может, принципиально, работать как генератором, так и двигателем.

Тем не менее, при необходимо знать, для какого режима работы электричсекая машина предназначается, — для генераторного или двигательного. Это объясняется тем, что на практике к генератору и к двигателю предъявляются определенные требования, которые не всегда совместимы, а потому может оказаться, что электрическая машина, выполненная как генератор, не будет в состоянии удовлетворительно работать в качестве двигателя, и наоборот.

Поэтому всякая машина должна иметь на своем «заводском щитке» указание, для какого режима работы она предназначается выпустившим ее заводом. Кроме того, нужно отметить, что ряд типов электрических машин возник и применяется только в качестве генератора, либо только в качестве двигателя.

Кинематическая обратимость электрической машины

С точки зрения осуществления в электрической машине энергопреобразования важно лишь взаимоотносительное движение ее двух основных органов, вытекает кинематическая обратимость электрической машины.

Это значит, что если ротор электрической машины застопорить, а статору дать возможность вращаться, то он придет во вращение, при этом будет вращаться, при неизменных электрических соединениях, в сторону, обратную той, в которую вращался ротор, превращенный в статор (это следует из законов механики).

Очевидно, что для придания статору возможности вращения его придется снабдить соответствующими подшипниками и, кроме того, скользящими электрическими контактами, чтобы сохранить подачу электрической энергии к статору, если таковая имела место до переделки. Очевидно, что при кинематическом обращении внутрироторной электрической машины получим внешнероторную электрическую машину, и наоборот.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Обратимость электрических машин

Обратимость электрических машин вызвана одинаковым устройством преобразователем электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот, электродинамическая головка может использоваться в качестве микрофона и наоборот, и т. п.

Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель, электродинамический микрофон будет выдавать более качественный звуковой сигнал, чем равная по размерам динамическая головка.

Применение

Данное явление широко используется в электротехнике, например, для электродинамического торможения: двигатель постоянного тока, будучи отключен от питающего его источника, вращаясь по инерции, сразу же переходит в генераторный режим из-за наличия в нём противоэлектродвижущей силы. Если одновременно с отключением от источника двигатель замкнуть на небольшое сопротивление, то под действием противоэлектродвижущей силы в замкнутой цепи якорной обмотки возникнет большой ток, который и создаст в двигателе тормозящий момент, направленный против его вращения, вследствие чего двигатель быстро остановится. Кроме того, генерируемый двигателем ток может подзаряжать аккумуляторы транспортного средства, на котором установлен, либо возвращаться в питающую электросеть, как происходит на некоторых электропоездах и трамваях при торможении или движении под уклон. Такой режим работы транспортного средства называется рекуперативным торможением.

Обратимость иногда используется в электронной технике: например, в некоторых образцах связной аппаратуры динамическая головка в режиме передачи служит микрофоном. Этим достигается улучшение массогабаритных показателей и удешевление изделия. Также известны образцы устройств, в которых светодиод часть времени используется в качестве фотодиода. Таким путём упрощается оптический тракт двунаправленных устройств оптической связи.

Свойством обратимости обладают также гидравлические машины.

Источник

Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Что значит трансформатор обладает обратимостьюРис. 1. Промышленный трансформатор

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Что значит трансформатор обладает обратимостьюРисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Что значит трансформатор обладает обратимостьюРисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Если k > 1, то трансформатор повышающий, а при 0 Что значит трансформатор обладает обратимостью Виды магнитопроводов

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Что значит трансформатор обладает обратимостью Трансформатор тока

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Импульсные

В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

Сварочные

В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

Что значит трансформатор обладает обратимостьюРис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

Разделительные

Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

Согласующие

Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

Пик-трансформаторы

Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Что значит трансформатор обладает обратимостьюРисунок 7. Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Что значит трансформатор обладает обратимостьюРис. 8. Строение промышленного трансформатора с масляным охлаждением

Сдвоенный дроссель

Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Что значит трансформатор обладает обратимостьюПример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Источник

Трансформаторы — назначение, виды и характеристики

Введение

Трансформатор — это статическое устройство, имеющее две или более обмотки, предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного напряжения и тока в одну или несколько других систем переменного напряжения и тока, имеющих обычно другие значения при той же частоте, с целью передачи мощности. (Источник: ГОСТ 30830-2002)

Что значит трансформатор обладает обратимостью Рис.1 Общий вид трансформатора

Значение трансформаторов как в электроэнергетике в целом, так и в повседневной жизни каждого человека трудно переоценить, они применяются повсеместно: на подстанциях, в городах и поселках, стоят силовые трансформаторы, понижающие высокое напряжение в тысячи и даже десятки тысяч Вольт до привычных нам 380/220 Вольт, на предприятиях стоят сварочные трансформаторы которые совершенно незаменимы на производстве, трансформаторы так же применяются и у нас дома в бытовой технике: в СВЧ-печах, блоках питания компьютеров и даже зарядных устройствах для телефонов.

В этой статье мы разберемся в том как устроены и как работают трансформаторы, какие бывают виды трансформаторов, а так же приведем их общие характеристики.

Общее устройство и принцип работы трансформаторов

В общем виде трансформатор представляет собой две обмотки расположенных на общем магнитопроводе. Обмотки выполняются из медного или алюминиевого провода в эмалевой изоляции, а магнитопровод изготовлен из тонких изолированных лаком пластин электротехнической стали, для уменьшения потерь электроэнергии на вихревые токи (так называемые токи Фуко).

Та обмотка, которая подключается к источнику питания, называется первичной обмоткой, а обмотка к которой подключается нагрузка — соответственно вторичной. Если со вторичной обмотки (W2) трансформатора снимается напряжение (U2) ниже, чем напряжение (U1) которое подаётся на первичную обмотку (W1), то такой трансформатор считается понижающим, а если выше — повышающим.

Что значит трансформатор обладает обратимостью Рис.2 Схема общего устройства трансформатора

Металлическая часть находящаяся на которой располагается электрическая обмотка (катушка), т.е. которая находится в ее центре, называется сердечником, в трансформаторах этот сердечник имеет замкнутое исполнение и является общим для всех обмоток трансформатора, такой сердечник называется магнитопроводом.

Как уже было сказано выше принцип работы трансформаторов основан на законе электромагнитной индукции, для понимания того как это работает представим самый простой трансформатор, аналогичный тому который представлен на рисунке 2, т.е. у нас есть магнитопровод на котором располагаются 2 обмотки, представим, что первая обмотка состоит всего из одного витка, а вторая — из двух.

Теперь подадим напряжение 1 Вольт на первую обмотку, ее единственный виток условно создаст магнитный поток величиной в 1 Вб (Справочно: Вебер (Вб) — единица измерения магнитного потока) в магнитопроводе, так как магнитопровод имеет замкнутое исполнение магнитный поток будет протекать в нем по кругу при этом пересекая 2 витка второй обмотки, при этом в каждом из этих витков за счет электромагнитной индукции наводит (индуктирует) электродвижущую силу (ЭДС) в 1 Вольт, ЭДС этих двух витков складывается и на выходе со второй обмотки мы получаем 2 Вольта.

Таким образом, подав на первичную обмотку 1 Вольт на вторичной обмотке мы получили 2 Вольта, т.е. в данном случае трансформатор будет называться повышающим, т.к. он повышает поданное на него напряжение.

Но этот трансформатор может работать и в обратную сторону, т.е. если на вторую обмотку (с двумя витками) подать 2 Вольта, то с первой обмотки по тому же принципу мы получим 1 Вольт, в этом случае трансформатор будет называться понижающим.

Общие характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

Мощность является одним из главных параметров трансформаторов. В паспортных (заводских) данных трансформатора указывается его полная мощность (обозначается буквой S), она зависит от типа используемого магнитопровода, количества и диаметра витков в обмотках, то есть от массогабаритных показателей электромагнитного аппарата.

Измеряется мощность в единицах В∙А (Вольт-Ампер). На практике для трансформаторов больших мощностей, как правило используются кратные Вольт-Амперам величины Киловольт-ампер — кВА (10 3 В∙А) и Мегавольт-ампер — МВА (10 6 В∙А).

Фактически каждый трансформатор имеет 2 значения мощности: входную (S1) — мощность, которую трансформатор потребляет из питающей его сети и выходную (S2) — мощность, которую трансформатор отдает подключенной к нему нагрузке, при этом выходная мощность всегда меньше входной за счет электрических потерь в самом трансформаторе (потери на нагрев обмоток, потери на вихревые токи и т.д.) величина этих потерь определяется другим основным параметром — коэффициентом полезного действия, сокращенно — КПД (обозначается буквой η), данный параметр указывается в процентах.

Формулы расчета мощности:

Следует помнить, что полная мощность состоит из активной (P) и реактивной (Q) мощностей:

Формулы расчета КПД (η) трансформатора:

Как уже было указано выше КПД определяет величину потерь в трансформаторе или иными словами эффективность работы трансформатора и определяется оно отношением выходной мощности (P2) к входной (P1):

В результате данного расчета значение КПД определяется в относительных единицах (в виде десятичной дроби), например — 0,92, чтобы получить значение КПД в процентах рассчитанную величину необходимо умножить на 100% (0,92*100%=92%).

Чем ближе КПД к 100% тем лучше, т.е. идеальный трансформатор — это трансформатор в котором P2=P1, однако в реальности из-за потерь в трансформаторе выходная мощность всегда ниже входной.

Это хорошо видно из так называемой энергетической диаграммы трансформатора (рис.3):

Что значит трансформатор обладает обратимостью

В режиме холостого хода (работы без подключенной к трансформатору нагрузки) КПД трансформатора η = 0. Мощность холостого хода P0, потребляемая трансформатором в этом режиме, расходуется на компенсацию магнитных потерь. С увеличением нагрузки в достаточно небольшом диапазоне (приблизительно β = 0,2) КПД достигает больших значений. В остальной части рабочего диапазона КПД трансформатора держится на высоком уровне. В режимах, близких к номинальному, КПД трансформатора η ном = 0,9 — 0,98.

Зависимость КПД от нагрузки представлена на следующем графике (рис.4):

Что значит трансформатор обладает обратимостью

Первичное номинальное напряжение U1н — это напряжение, которое требуется подать на первичную катушку трансформатора, чтобы в режиме холостого хода получить номинальное вторичное напряжение U2н.

Вторичное номинальное напряжение U2н — это значение, которое устанавливается на выводах вторичной обмотки при подаче на первичную обмотку номинального первичного напряжения U1н, в режиме холостого хода.

Номинальный первичный ток I1н — это максимальный ток, протекающий в первичной обмотке, т.е. потребляемый трансформатором из сети, на который рассчитан данный трансформатор и при котором возможна его длительная работа.

Номинальный вторичный ток I2н — это максимальный ток нагрузки, протекающий во вторичной обмотке, на который рассчитан данный трансформатор и при котором возможна его длительная работа.

Коэффициент трансформации (kт) — это отношение числа витков в первичной обмотке к числу витков во вторичной обмотке k=W1/W2.

Так же kт определяется как отношение напряжений на зажимах обмоток: kт=U1н/U2н.

Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего — меньше 1.

Примечание: для трансформаторов тока kт определяется как отношение номинальных значений первичного и вторичного токов kт=I1н/I2н

Число обмоток у однофазных трансформаторов чаще две, но может быть и больше. На первичную обмотку подают одно значение напряжения, а с вторичной обмотки снимают другое значение.

Когда требуются различные напряжения для питания нескольких приборов, то в этом случае вторичных обмоток может быть несколько. Также есть трансформаторы с общей точкой на вторичной обмотке для двуполярного питания.

Рабочая частота трансформаторов может быть различной. Но при одинаковых напряжениях первичной обмотки, трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышается нагрев магнитопровода и обмоток, приводящий к ускоренному старению и разрушению изоляции.

Габариты трансформатора напрямую зависят от частоты тока в цепи, в которой он будет установлен. Конечно, трансформатор должен быть рассчитан на эту частоту. Зависимость эта обратная, т.е. с увеличением частоты габариты трансформатора значительно уменьшаются. Именно поэтому, импульсные блоки питания (с импульсными высокочастотными трансформаторами) намного компактнее.

В зависимости от назначения трансформаторы изготавливают однофазными и трехфазными.

Однофазный трансформатор представляет собой устройство для трансформирования электрической энергии в однофазной цепи. В основном имеет две обмотки, первичную и вторичную, но вторичных обмоток может быть и несколько.

Трехфазный трансформатор представляет собой устройство для трансформирования электрической энергии в трёхфазной цепи. Конструктивно состоит из трёх стержней магнитопровода, соединённых верхним и нижним ярмом. На каждый стержень надеты обмотки W1 и W2 высшего (U1) и низшего (U2) напряжений каждой фазы (рис.5).

Что значит трансформатор обладает обратимостью

Виды трансформаторов

Все трансформаторы можно разделить на следующие виды:

Силовые трансформаторы являются наиболее распространенным типом промышленных трансформаторов. Они применяются для повышения или понижения напряжения. Являются неотъемлемой частью сети электроснабжения предприятий, населенных пунктов и т.д.

Что значит трансформатор обладает обратимостью

Автотрансформатором называется такой трансформатор, у которого имеется только одна обмотка с числом витков W1. Часть этой обмотки с числом витков W2 принадлежит одновременно первичной и вторичной цепям:

Что значит трансформатор обладает обратимостью Данный тип трансформаторов применяется в приборах автоматического регулирования напряжения. Эти устройства используются, например, в образовательных учреждениях для проведения лабораторных работ, их можно встретить в электролабораториях различных предприятий для проведения тестовых работ.

Внешний вид автотрансформаторов:

Что значит трансформатор обладает обратимостью

Измерительные трансформаторы подразделяются на трансформаторы напряжения и трансформаторы тока. Они обеспечивают гальваническую развязку между цепями высокого и низкого напряжений. Как видно из названия, основное применение — снижение первичного напряжения или тока до величины, используемой в измерительных цепях, например для подключение амперметров, вольтметров, счетчиков электрической энергии. Также они могут применяться в различных цепях защиты, управления и сигнализации. От других типов трансформаторов отличаются повышенной точностью и стабильностью коэффициента трансформации.

Пример измерительных трансформаторов:

Что значит трансформатор обладает обратимостью

Разделительные трансформаторы, данные устройства мало чем отличается от обычных понижающих или повышающих трансформаторов. Единственное различие заключено в том, что на общем магнитопроводе размещаются абсолютно идентичные обмотки. То есть у них полностью совпадают такие параметры как сечение провода, количество витков, изоляция. Поэтому коэффициент трансформации у них равен единице.

Задачей этих устройств является обеспечение гальванической развязки, т.е. исключение непосредственной электрической связи между электрической сетью и подключаемому к ней, через данный трансформатор, оборудованию.

Применяются в тех областях где предъявляются повышенные требования к электробезопасности, например подключение медицинского оборудования.

Что значит трансформатор обладает обратимостью

Согласующие трансформаторы применяются для согласования сопротивления различных частей каскадов электронных схем, а также для подключения нагрузки, не соответствующей по сопротивлению допустимым значениям источника сигнала, что позволяют передать максимум мощности в такую нагрузку. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения.

Они применяются в усилителях низкой частоты в качестве входных, межкаскадных и выходных трансформаторов.

В качестве входных, согласующие трансформаоры применяются в звуковоспроизводящей аппаратуре для подключения микрофонов и звукоснимателей различных типов.

Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приёмным и передающим устройствам.

Что значит трансформатор обладает обратимостью

Импульсные трансформаторы — это устройства с ферромагнитным сердечником, которые используются для изменения импульсов тока или напряжения. Преобразуют получаемый сигнал в прямоугольный импульс. Применяются для предотвращения высокочастотных помех. Импульсные трансформаторы наиболее часто используются в электронно-вычислительных устройствах, системах радиолокации, импульсной радиосвязи, в качестве измерительных устройств в счетчиках электроэнергии

Что значит трансформатор обладает обратимостью

Пик-трансформаторы — преобразуют напряжение синусоидальной формы в импульсные пики с сохранением их полярности и частоты колебаний.

Незаменимы там, где для запуска исполнительного устройства требуется единичный импульс с установленной амплитудой напряжения. Это, например, управляющие электронные схемы, собранные на тиристорах. Так же применяются в качестве генераторов импульсов, главным образом в высоковольтных исследовательских установках, в технике связи и радиолокации. Наибольшее применение пиковые трансформаторы получили в автоматизации технологических процессов.

Что значит трансформатор обладает обратимостью

Сварочные трансформаторы — являются основными источникам питания для ручной дуговой сварки на переменном токе. Они служат для понижения напряжения сети с 220В или 380В до безопасного и вместе с тем повышения величины тока для увеличения температуры электрической дуги.

Что значит трансформатор обладает обратимостью

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *