Что значит точка не лежащая на прямой

Точки, Прямые и Отрезки — Определения и Свойства

Что значит точка не лежащая на прямой

Вспомним определения точки и прямой:

Точка — это фигура в геометрии, не имеющая никаких
измеримых характеристик, кроме координат.

Прямая — это фигура в геометрии, которая не
имеет ни начала, ни конца.

Для изображения прямых на чертеже используют линейку, но
при этом можно изобразить только часть прямой, а вся прямая бесконечна.
Принято обозначать прямые малыми латинскими буквами, а точки —
большими латинскими буквами.

Что значит точка не лежащая на прямой
На рисунке 1 изображены прямая c и точки A, B, D, E. Точки А и B
лежат на прямой c, а точки D и E не лежат. Прямая с проходит через
точки A и B, но не проходит через точки С и D. Также заметим, что через
точки A и В нельзя провести другую прямую, не совпадающую с прямой c.

Через любые две точки можно провести прямую,
и притом только одну.

Что значит точка не лежащая на прямой

Если две прямые имеют общую точку, то можно сказать,
что они пересекаются. На рисунке 2 прямые a и b
пересекаются в общей точке C, а прямые e и f не
пересекаются, так как не имеют общей точки. Две прямые
не могут иметь двух и более общих точек, так как через две
и более точек проходит только одна прямая.

Две прямые имеют только одну общую точку,
либо не имеют общих точек.

Прямую, на которой отмечены две точки, иногда обозначают двумя
буквами. Для обозначения того, лежит ли точка на прямой или нет,
используют математический символ или . Пример использования
математического символа или на рисунке 3.

Что значит точка не лежащая на прямой

Часть прямой ограниченная двумя точками называется отрезком. Точки,
ограничивающие отрезок, называются концами отрезка. Отрезок имеет
начало и конец. Пример отрезка на рисунке 4.

Источник

Геометрия 7 класс.
Точка, прямая и отрезок

Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.

Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.

Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.

Точка — элементарная фигура, не имеющая частей.

Прямая состоит из множества точек и простирается бесконечно в обе стороны.

Что значит точка не лежащая на прямой

То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:

Как обозначить прямую

Прямую обычно обозначают одной маленькой латинской буквой.

Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.

Задача № 1 из учебника Атанасян 7-9 класс

Решение задачи

Что значит точка не лежащая на прямой

Что значит точка не лежащая на прямой

Что значит точка не лежащая на прямой

Что значит точка не лежащая на прямой

Опишем взаимное расположение точек и прямой.

Как обозначается пересечение прямых

Что значит точка не лежащая на прямой

Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).

Что значит точка не лежащая на прямой

Прямые e и f не имеют общей точки — т.е. они не пересекаются.

Взаимное расположение прямой и точек

Что значит точка не лежащая на прямой

Через одну точку (·)A можно провести сколько угодно прямых.

Через две точки (·)A и (·)B можно провести только одну прямую.

Сколько общих точек имеют две прямые

Две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.

Первый случай расположения прямых

Что значит точка не лежащая на прямой

На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.

Второй случай расположения прямых

Что значит точка не лежащая на прямой

Третий случай расположения прямых

Что значит точка не лежащая на прямой

Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Задача № 3 из учебника Атанасян 7-9 класс

Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.

Решение задачи

Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.

Что значит точка не лежащая на прямой

Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.

Что значит точка не лежащая на прямой

Что значит точка не лежащая на прямой

Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.

Ответ: точек пересечения получается одна или три.

Что такое отрезок

Отрезок — часть прямой, ограниченная двумя точками.

Что значит точка не лежащая на прямой

Что значит точка не лежащая на прямой

В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.

Источник

Плоскость, прямая линия, луч

Плоскость в математике можно сравнить с другими плоскостями, которые окружают нас в повседневной жизни: школьная доска, лист бумаги, экран планшета или смартфона и т.д. На них мы можем легко обозначить точки и линии, которые мы изучали на предыдущем уроке. На школьной доске мы это делаем мелом или фломастером, на листе бумаги можем нарисовать их ручкой, карандашом, фломастером; когда мы прокручиваем окно сайта или приложения на смартфоне, мы проводим на экране пальцем линию, когда переходим по ссылкам – ставим на его плоскости точку.

Но эти примеры плоскостей из жизни имеют свои размеры и границы, они конечные, их можно измерять.

Плоскость – это воображаемая абсолютно ровная и неизменяемая поверхность, которая не имеет толщины, но обладает бесконечными длиной и шириной.

Плоскость нельзя измерять, потому что она бесконечная.

Плоскость нельзя согнуть, в каком бы положении она ни находилась.

Все объекты и фигуры, которые изучаются в курсе математики 5 класса, находятся на плоскости.

Прямая линия

Прямая линия – абсолютно ровная линия, которая длится бесконечно в обе стороны, и на всем ее протяжении не изгибается и не преломляется.

Обозначение прямой

Например, на рисунке 1 обозначены такие прямые:

Что значит точка не лежащая на прямой

Рис. 1 Обозначение прямой линии

Что значит точка не лежащая на прямой

Рис. 2 Обозначение прямой с несколькими точками

Некоторые свойства прямой

Две точки, лежащие на одной прямой, создают отрезок этой прямой.

Через две любые точки на плоскости можно провести единственную прямую.

Что значит точка не лежащая на прямой

Рис. 3 Отрезок на прямой

Две разные прямые могут пересекаться или не пересекаться.

Две прямые пересекаются в том случае, если у них есть общая точка.

Что значит точка не лежащая на прямой

Рис. 5 Пересечение прямых

Более подробно об этих и других свойствах прямой написано в уроке геометрии 7 класса.

Луч – это часть прямой, которая начинается в определенной точке и длится бесконечно в одну сторону.

Что значит точка не лежащая на прямой

Рис. 6 Деление прямой линии точкой

У луча есть начало, но нет конца. От прямой луч отличается тем, что луч бесконечно продолжается только в одну сторону.

Свое название этот математический объект получил по аналогии с лучом света, который имеет начало (источник света), но определенного конца у него нет.

Обозначение луча

Луч, как и прямую, обозначают двумя способами.

Что значит точка не лежащая на прямой

Рис. 7 Обозначение луча

На рисунке 2 приведены примеры обозначения луча:

Луч имеет второе название – полупрямая.

Что значит точка не лежащая на прямой

Рис. 8 Дополнительные друг другу и совпадающие лучи

На рисунке 8 видно, что:

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.6 / 5. Количество оценок: 22

Источник

Прямая и точка. Основные определения.

Что значит точка не лежащая на прямой

Основные определения по разделу «Основные понятия. Свойства простейших геометрические фигур.»

Что значит точка не лежащая на прямой

Содержимое разработки

Что значит точка не лежащая на прямой

Прямая бесконечна. На рисунке изображается только ее часть, но мы представляем ее себе неограниченно продолженной в обе стороны.

Аксиома 1
Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Аксиома 2 Через любые две точки можно провести прямую, и только одну.

Что значит точка не лежащая на прямой

Если две прямые имеют общую точку, то говорят что они пересекаются.
Если две прямые не имеют общих точек, то говорят что они не пересекаются.

Прямая a пресекает прямую b в точке A. A – точка пересечения прямых a и b.

Что значит точка не лежащая на прямой

Точки A и B принадлежат прямой a. Тоска С не принадлежит прямой a.
Соответственно точки С и B принадлежат прямой b. Тоска A не принадлежит прямой b.
Так же говорят точки A и B лежат на прямой a, а точка С не лежит.

Что значит точка не лежащая на прямой

Прямую можно обозначить двумя точками лежащими на ней. Прямую с можно обозначить AB

Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными ее точками, которые называются концами отрезка.

Что значит точка не лежащая на прямой

Точки прямой a, расположенные между точками A и B называются «отрезком AB». A и B – концы отрезка AB.

Аксиома 3 Из трех точек на прямой одна и только одна лежит между двумя другими.

Что значит точка не лежащая на прямой

На прямой b три точки A, B и С. Точка В лежит между точками A и С или можно сказать, что точка В разделяет точки A и С. Иначе говоря, А и С лежат по разные стороны от точки B.

Что значит точка не лежащая на прямой

На прямой с точка X лежит между точками A и B, можно сказать X принадлежит отрезку AB. Точка Y не лежит между точками A и B, поэтому она не принадлежит отрезку AB.

Аксиома 4
Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

Что значит точка не лежащая на прямой

Расстоянием между двумя точками A и B называется длина отрезка AB.
При этом, если точки A и B совпадают, будем считать, что расстояние между ними равно нулю.
Два отрезка называются равными, если равны их длины.

Если взять на отрезке AB точку, пусть это будет точка С. То длина отрезка AB равна сумме длин отрезков AC и CB. Это можно записать так AB = AC + CB

Что значит точка не лежащая на прямой

Обычно слово отрезок не пишут, а записывают название концов отрезков заключенными в квадратные скобки. Т.е. можно записать «отрезок AB» или [AB].

Полупрямая, луч.

Лучом или полупрямой называется часть прямой, состоящая из всех точек этой прямой, лежащих по одну сторону от фиксированной точки этой прямой, и самой этой точки, называемой началом луча или начальной точкой полупрямой.

Что значит точка не лежащая на прямой

Разные лучи одной и той же прямой, имеющие общую начальную точку, называются дополнительными полупрямыми. Полупрямые AC и AB называются дополнительными.

Что значит точка не лежащая на прямой

Аксиома На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.

Перпендикулярные прямые

Что значит точка не лежащая на прямой

Две прямые называются перпендикулярными, если они пересекаются под прямым углом.
Прямая a пересекается с прямой b под прямым углом в точке A. Можно зависать используя значок перпендикулярности: a ⊥ b. Это читается так: прямая а перпендикулярна прямой b.
Следует заметить, что смежный угол и вертикальный угол с прямым углом тоже прямые.

Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну.

Что значит точка не лежащая на прямой

Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b.
Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость. Теорема доказана.

Что значит точка не лежащая на прямой

Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, имеющий одним из концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра. AB – перпендикуляр к прямой a. Точка A – основание перпендикуляра.ммм

Источник

Прямая

Прямая − одно из фундаментальных понятий евклидовой геометрии.

Прямая не может быть определена в терминах ранее определенных объектов.

Прамая бесконечна, она не имеет ни начала ни конца.

Обозначение прямой

Прямая обычно обозначается маленькой латинской буквой. Прямую можно обозначить также через две разные точки на этой прямой (Рис.1):

Что значит точка не лежащая на прямой

Свойства прямой в эвклидовом пространстве

1. Через любую точку можно провести бесконечно много прямых.

Что значит точка не лежащая на прямой

2. Через любые несовпадающие точки можно провести только одну прямую.

Что значит точка не лежащая на прямой

3. Две несовпадающие прямые на плоскости или пересекаются, или параллельны.

Что значит точка не лежащая на прямой

4. Из трех разных точек, лежащих на данной прямой, только одна может лежать между двумя другими точками.

Что значит точка не лежащая на прямой

На Рис.2 точка B лежит между точками A и C.

Можно сказать также:

5. Есть точки, лежащие на прямой и не лежащие на ней.

Что значит точка не лежащая на прямой

На Рис.3 точки A и B лежат на прямой a, а точка C не лежит на прямой a. Можно сказать также, что точки A и B принадлежат прямой a, а точка C не принадлежит прямой a. Или же прямая a проходит через точки A и B и не проходит через точку C.

Для записи принадлежности точки к прямой используют символ ∈. Запись \( \small A∈ a\) обозначает, что точка A принадлежит прямой a. Чтобы указать, что точка не принадлежит к прямой используют символ \( \small ∉. \) Запись \( \small C∉ a\) обозначает, что точка C не принадлежит прямой a.

6. В трехмерном пространстве прямые или пересекаются, или параллельные, или скрещиваются.

7. Если две любые точки прямой лежат на плоскости, то все точки этой прямой лежат на этой плоскости.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *