Что значит среднеквадратичное отклонение
Стандартное отклонение
Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.
Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.
Стандартное отклонение обозначается буквой σ (греческая буква сигма).
Стандартное отклонение также называется:
Использование и интерпретация величины среднеквадратического отклонения
Стандартное отклонение используется:
Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.
День 1 | День 2 | День 3 | День 4 | |
---|---|---|---|---|
Пред.А | 19 | 21 | 19 | 21 |
Пред.Б | 15 | 26 | 15 | 24 |
В обеих компаниях среднее количество товара составляет 20 единиц:
Однако, глядя на цифры, можно заметить:
Если рассчитать стандартное отклонение каждой компании, оно покажет, что
Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).
Расчет среднеквадратичного (стандартного) отклонения
Формулы вычисления стандартного отклонения
Разница между формулами S и σ («n» и «n–1»)
Состоит в том, что мы анализируем — всю выборку или только её часть:
Как рассчитать стандартное отклонение?
Пример 1 (с σ)
Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.
День 1 | День 2 | День 3 | День 4 | |
Пред.Б | 15 | 26 | 15 | 24 |
Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:
Применяем эти шаги:
1. Найти среднее арифметическое выборки:
μ = (15 + 26 + 15+ 24) / 4 = 20
2. От каждого значения выборки отнять среднее арифметическое:
3. Каждую полученную разницу возвести в квадрат:
4. Сделать сумму полученных значений:
5. Поделить на размер выборки (т.е. на n):
6. Найти квадратный корень:
Пример 2 (с S)
Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.
У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.
Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.
Яблоня 1 | Яблоня 2 | Яблоня 3 | Яблоня 4 | Яблоня 5 | Яблоня 6 |
9 | 2 | 5 | 4 | 12 | 7 |
Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:
Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.
Применяем практически те же шаги:
1. Найти среднее арифметическое выборки:
Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5
2. От каждого значения выборки отнять среднее арифметическое:
X1 – Xср = 9 – 6,5 = 2,5
X2 – Xср = 2 – 6,5 = –4,5
X3 – Xср = 5 – 6,5 = –1,5
X4 – Xср = 4 – 6,5 = –2,5
X5 – Xср = 12 – 6,5 = 5,5
X6 – Xср = 7 – 6,5 = 0,5
3. Каждую полученную разницу возвести в квадрат:
4. Сделать сумму полученных значений:
Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5
5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):
(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1
6. Найти квадратный корень:
S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193
Дисперсия и стандартное отклонение
Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).
Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:
Ещё расчёт дисперсии можно сделать по этой формуле:
Правило трёх сигм
Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.
Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:
Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.
Стандартное отклонение в excel
Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):
1. Занесите все данные в документ Excel.
2. Выберите поле, в котором вы хотите отобразить результат.
3. Введите в этом поле «=СТАНДОТКЛОНА(«
4. Выделите поля, где находятся данные, потом закройте скобки.
5. Нажмите Ввод (Enter).
В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.
Коэффициент вариации
Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.
Стандартное отклонение делится на среднее и умножается на 100%.
Можно классифицировать вариабельность выборки по коэффициенту вариации:
Среднеквадратичное отклонение
Вы будете перенаправлены на Автор24
При рассмотрении какой-либо величины и её изменения важным является не только понятие среднего арифметического этой величины, но и её отклонение.
Для оценки отклонения и разброса измеряемой величины пользуются несколькими различными критериями, например, абсолютной погрешностью, иначе называемой отклонением от среднего каждой конкретной величины.
Но абсолютная погрешность не является критерием, показывающим разброс измеряемой величины, так как сумма всех абсолютных погрешностей равна нулю.
Поэтому для оценки погрешности вводится другая величина, называемая средним квадратическим отклонением.
Основные понятия
Для объяснения термина «среднеквадратичное отклонение» необходимо ознакомиться с используемой терминологией.
Средним арифметическим или средней величиной называют число, являющееся суммой всех проведённых измерений, разделённой на количество этих измерений.
Со средним арифметическим также связано другое понятие — математическое ожидание.
Математическое ожидание — это значение среднего арифметического некоторой величины при стремлении количества измерений этой величины к бесконечности.
Готовые работы на аналогичную тему
Оценив относительную погрешность каждого измерения, можно отбросить значения, погрешность которых слишком большая и при дальнейших расчётах использовать только значения с небольшими относительными погрешностями.
Что такое среднее квадратичное отклонение и как его определять
Теперь перейдём непосредственно к термину «среднеквадратическое отклонение».
Если дисперсия и, соответственно, среднее квадратическое отклонение достаточно малы, то это значит, что величина большинства погрешностей не велика по модулю и все значения измеряемой величины достаточно близки к среднему.
Покажем, как применять полученную информацию.
Задача:
Решение:
Найдём среднее арифметическое, оно равно:
Теперь найдём абсолютную и относительную погрешность каждого измерения:
$ΔU_1=U_ср-U_1= 5,244-5,22 =0,024; δ_1=\frac<|U_1|>
$ΔU_2=U_ср-U_2= 5,244-5,30=-0,056; δ_2=\frac<|U_2|>
И квадратичное отклонение:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 07 04 2021
Статистические данные
Слово статистика образовано от латинского status, которое обозначает состояние. От этого корня произошли слова stato (государство), statistica (сумма знаний о государстве). Математическая статистика — наука, которая изучает методы сбора и обработки информации, представленной в численном виде. Эта информация появляется как результат экспериментов. Во многом математическая статистика опирается на теорию вероятностей, которая позволяет оценить точность и надёжность заключений, сделанных на основании изучения ограниченных статистических данных.
Метод не исследует сущность процессов, а формулирует и описывает их количественную сторону. Термином генеральная совокупность обозначается общность всех объектов, относительно которых необходимо сделать выводы при изучении научной проблемы. Выборочная совокупность или выборка — множество объектов, отобранных из генеральной совокупности для исследования. Основные цели математической статистики:
Главный метод математической статистики — выборочный метод, состоящий в исследовании представительной выборочной совокупности для получения достоверной характеристики генеральной. Отбор объектов в выборку производится случайно, а исследуемое свойство должно обладать статистической устойчивостью, то есть иметь высокую частоту повторений при многократных испытаниях.
Выборочный метод сокращает время и трудоёмкость исследований, так как изучение всей совокупности оказывается более тяжёлым или невозможным. Математическая статистика выявляет закономерности массовых явлений и предсказывает появление внешних влияний.
Размах вариации
Вариация — это различия значений признака у единиц исследуемой совокупности. Она образуется из-за того, что индивидуальные значения формируются при различных условиях. Выборка должна быть представительной, чтобы по результатам её исследований можно было сделать правильные выводы о характеристиках всей совокупности.
Количественная репрезентативность достигается при использовании достаточного числа наблюдений в выборке, которое может обеспечить получение достоверных результатов. Качественная репрезентативность заключается в одинаковой структуре выборочной и генеральной совокупностей по признакам, имеющим влияние на получение конечного результата. К абсолютным показателям вариации относятся:
Размах вариации показывает абсолютную разницу между максимумом и минимумом значений признака:
R = x max — x min, где x — значения признака.
Основным недостатком показателя R можно назвать то обстоятельство, что колебания значений признака могут вызываться случайными причинами и искажать характерный для исследуемой совокупности размах.
Показатели отклонения
Существуют показатели вариации, учитывающие все значения величин, а не только наибольшие или наименьшие. Одним из них можно назвать среднее линейное отклонение — показатель, характеризующий меру разброса значений. Сначала требуется определить точку отсчёта разброса. Как правило, ею становится среднее арифметическое значение, входящее в исследование величин. Потом необходимо измерить, отклонение от среднего для каждого значения. Все отклонения вычисляются по модулю и определяется среднее значение уже среди них. Формула для расчёта отклонения:
a = Σ n i=1 (x — x̅) / n, где:
Коэффициент вариации
Квадратичное отклонение — это абсолютная оценка меры разброса. Для того чтобы сравнить величину разброса с самими значениями величины, необходимо применить относительный показатель — коэффициент вариации:
V = σ / x̅, где σ — стандартное отклонение из выборки, x̅ — среднее арифметическое.
Коэффициент вариации измеряется в процентах. Показатель полезен для сравнивания однородности разных процессов.
Математическое ожидание — среднее значение случайной величины. Для дискретной выборки оно определяется по формуле:
M (X)= Σ n i=1 xi ⋅ pi, где xi — случайные значения, pi — их вероятность.
Дисперсией называется среднее значение квадрата отклонения случайной величины от её математического ожидания:
D (X) = M (X 2 ) — (M (X)) 2
Для дискретной случайной величины формула приобретает вид:
Среднеквадратическое отклонение или стандартный разброс — это корень квадратный из дисперсии, формула которого имеет вид:
Дисперсия и стандартный разброс — взаимозависимые характеристики. Стандартная ошибка среднего — величина, которая характеризует квадратическое отклонение выборочного среднего, рассчитанного по выборке размера из генеральной совокупности. Величина ошибки SDx̅ зависит от дисперсии генеральной совокупности и объёма выборки и рассчитывается по формуле:
SDx̅ = σ / √ n, где σ — величина стандартного разброса генеральной совокупности, а n — объём выборки.
Статистическая закономерность — это количественная форма проявления причинной связи. Она возникает как результат воздействия большого числа причин, действующих либо постоянно, либо только временами. Существует ряд статистических критериев, которые позволяют сравнивать экспериментально полученное распределение с нормальным, полученным в теории. Погрешность измерения — отклонение измеренного значения величины от действительного, являющиеся характеристикой точности измерения. Вместе с полученным результатом должна указываться погрешность измерений.
Пример расчёта
Пример расчёта по формулам для среднеквадратичного отклонения и дисперсии при решении следующей задачи по теории вероятностей: для выполнения ремонтных работ рабочему необходима краска определённого цвета. В городе имеется четыре строительных магазина, в каждом из которых эта краска может находиться в продаже с вероятностью 0,41. Записать закон распределения количества посещаемых магазинов. Рассчитать дисперсию и среднеквадратичное отклонение случайной величины. Обход заканчивается после того, как необходимая краска будет куплена или после посещения всех четырёх магазинов.
x = 1 — краска куплена в первом магазине.
x = 2 — краски не нашлось в первом магазине, но она была во втором.
p (2) = (1 — 0,41) · 0,41 = 0,59 · 0,41 = 0,242.
x = 3 — краски не нашлось в двух первых магазинах, но она была в третьем.
p (3) = (1 — 0,41) 2 · 0,41 = 0,59 2 · 0,41 = 0,143.
x = 4 — краски не было в первых трёх магазинах, рабочий зашёл в четвёртый магазин, купил краску или просто закончил обход.
p (4) = 0,59 3 · 0,41 + 0,59 4 = 0,205.
Закон распределения:
xi | 1 | 2 | 3 | 4 |
p (X) | 0,41 | 0,242 | 0,143 | 0.205 |
Математическое ожидание: M (X) = 1 · 0,41 + 2 · 0.242 + 3 · 0,143 + 4 · 0,205 = 2,143.
Дисперсия: D (X) = Σ n i=1 xi 2 ⋅ pi — M (X) 2 = 1 2 · 0,41 + 2 2 · 0,242 + 3 2 · 0,143 + 4 2 · 0,205 — 2,143 2 = 1,353.
Стандартное отклонение: σ(X) = √ D (X) = √1,353 = 1,163.
Ответ: Дисперсия 1,353; квадратическое отклонение 1,163.
Для вычисления среднеквадратичного отклонения в онлайн-калькуляторе достаточно внести в таблицу значения случайной величины xi и их количество.
Среднеквадратичное отклонение применяется для определения погрешности при проведении последовательных измерений. Эта характеристика играет важную роль для сравнения изучаемого процесса с теоретически предсказанным. Если СКО велико, то полученные результаты или метод их получения нужно проверить.
Среднеквадратическое отклонение
Среднеквадрати́ческое отклоне́ние (синонимы: среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние; близкие термины: станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.
Содержание
Основные сведения
Измеряется в единицах измерения самой случайной величины. Равно корню квадратному из дисперсии случайной величины. Среднеквадратическое отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.
Стандартное отклонение (оценка среднеквадратического отклонения случайной величины Пол, стены вокруг нас и потолок, x относительно её математического ожидания на основе несмещённой оценки её дисперсии):
Правило трёх сигм
Правило трёх сигм () — практически все значения нормально распределённой случайной величины лежат в интервале . Более строго — не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при условии, что величина истинная, а не полученная в результате обработки выборки).
Интерпретация величины среднеквадратического отклонения
Большое значение среднеквадратического отклонения показывает большой разброс значений в представленном множестве со средней величиной множества; маленькое значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.
Например, у нас есть три числовых множества: <0, 0, 14, 14>, <0, 6, 8, 14>и <6, 6, 8, 8>. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.
В общем смысле среднеквадратическое отклонение можно считать мерой неопределенности. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.
Практическое применение
На практике среднеквадратическое отклонение позволяет определить, насколько значения в множестве могут отличаться от среднего значения.
Климат
Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.
Спорт
Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.
Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.
Технический анализ
В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера.
См. также
Литература
Статистические показатели | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Описательная статистика |
| ||||||||||||
Статистический вывод и проверка гипотез |
| ||||||||||||
Корреляция | Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания | ||||||||||||
Линейные модели | Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ | ||||||||||||
Регрессия | Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия |
Полезное
Смотреть что такое «Среднеквадратическое отклонение» в других словарях:
Среднеквадратическое отклонение — мера отклонения опытных данных от выборочного среднего значения или от функциональной зависимости, выражаемая в абсолютных единицах, вычисляется по формулам (4), (12). Источник: ГОСТ 20522 96: Грунты. Методы статистической обработки результатов… … Словарь-справочник терминов нормативно-технической документации
Среднеквадратическое отклонение — показатель связи результатов деятельности взаимного фонда с общей ситуацией на рынке или динамикой соответствующего базового индекса. Если среднеквадратическое отклонение равно 1, то стоимость портфеля фонда в точности повторяет изменения… … Финансовый словарь
Среднеквадратическое отклонение — повторяемости: среднеквадратическое отклонение результатов измерений, полученных в условиях повторяемости (является мерой рассеяния результатов измерений в условиях повторяемости). Источник: ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА… … Официальная терминология
Среднеквадратическое отклонение — * сярэднеквадратычнае адхіленне * mean square deviation or standard deviation описательная статистика (параметр), являющаяся мерой рассеяния для приближенно нормально распределенных данных. Если распределение не соответствует закону нормального… … Генетика. Энциклопедический словарь
среднеквадратическое отклонение — vidutinis kvadratinis nuokrypis statusas T sritis automatika atitikmenys: angl. root mean square deviation vok. mittlere quadratische Abweichung, f rus. среднеквадратическое отклонение, n pranc. écart moyen quadratique, m … Automatikos terminų žodynas
Среднеквадратическое отклонение воспроизводимости — Среднеквадратическое отклонение воспроизводимости: среднеквадратическое отклонение результатов измерений, полученных в условиях воспроизводимости (является мерой рассеяния результатов измерений в условиях воспроизводимости). Источник:… … Официальная терминология
среднеквадратическое отклонение воспроизводимости — 3.6.5.1 среднеквадратическое отклонение воспроизводимости: Среднеквадратическое отклонение результатов измерений, полученных в условиях воспроизводимости (является мерой рассеяния результатов измерений в условиях воспроизводимости). Источник:… … Словарь-справочник терминов нормативно-технической документации
среднеквадратическое отклонение воспроизводимости результатов испытаний — 3.21 среднеквадратическое отклонение воспроизводимости результатов испытаний sR:Среднеквадратическое отклонение результатов испытаний, полученных в условиях воспроизводимости (см. 3.19) [5]. Источник … Словарь-справочник терминов нормативно-технической документации
среднеквадратическое отклонение повторяемости (сходимости) результатов испытаний — 3.24 среднеквадратическое отклонение повторяемости (сходимости) результатов испытаний sr: Среднеквадратическое отклонение результатов испытаний, полученных в условиях повторяемости (сходимости) (см. 3.22) [5]. Источник … Словарь-справочник терминов нормативно-технической документации
среднеквадратическое отклонение (совокупности), стандартное отклонение (совокупности) — 3.13 среднеквадратическое отклонение (совокупности), стандартное отклонение (совокупности) [(population) standard deviation] σ: Положительный квадратный корень из дисперсии совокупности σ2. Источник: ГОСТ Р ИСО 12491 2011: Материалы и изделия… … Словарь-справочник терминов нормативно-технической документации