Что значит сравнить с нулем значение выражения
Математика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
В кабинет к шестиклассникам вошла Наталья Ивановна, и сообщила,что завтра в школе состоится выступление цирковой труппы, стоимость билета составляет 50 рублей. Желающие посетить представление, должны завтра принести деньги на приобретение билета. Ваня и Игнат очень хотели посмотреть выступление, договорились приобрести билеты. Однако, Игнат забыл деньги дома. Мальчик очень огорчился. Наталья Ивановна заметила грустного ученика и предложила купить билет вместо него, с условием, что мальчик принесет забытую купюру завтра. Друзья с радостью пошли на представление.
Сравнение положительных чисел с нолем
Чтобы не испытывать трудностей при выполнении сравнения положительных чисел и нуля, давайте рассмотрим задачу.
У Марины в кармане было четыре конфеты, а в Наташином кармашке лежало 0 конфет. Подумайте и объясните, у кого из девочек имелось большее количество конфет.
Изучив условие задачи, мы понимаем, что для ответа на главный вопрос задачи нужно выполнить сравнение количества Марининых сладостей с количеством сладостей, имеющихся у Натальи, то есть 4 и 0.
Давайте определим, к каким числам можно отнести значение четыре? К положительным или отрицательным?
Вспомним определение положительного:
Положительными числами называют числа со знаком +.На письме, не принято ставить знак «плюс» перед положительными числами. Считается, что если перед числом не стоит знак «минус», то число является положительным.
Исходя из определения, рассматриваемое значение считается положительным.
Переходим ко второму числу: 0.
Обязательно нужно понимать, что такое 0.
0 является целым числом, но при этом, не обозначает количество предметов.
Если будем рассматривать ноль в обычной жизни, то можно сказать иначе: 0 = «ничего».
в кассе 0 рублей = касса пуста, денег нет;
улов дедушки составил 0 рыб = дедушка ничего не поймал;
мальчик вынес во двор 0 игрушек = мальчик не вынес во двор игрушки.
Делаем вывод, что у Наташи не было конфет, а у Марины было 4 леденца.
Теперь можно выполнить сравнение положительного числа 4 с числом 0.
Даже ребенок понимает, что четыре конфетки больше, чем ничего или 0.
Из рассмотренного пояснения следует:
любое положительное число всегда будет больше, чем ноль!
Сравнение отрицательных чисел с нулем
Теперь, давайте разберемся, как сравнить отрицательное число с нулем. Для начала вспомним, какие числа называют отрицательными.
Чтобы разобрать данную ситуацию, нужно определить, в какой из дней на улице будет теплее, следовательно, температура воздуха будет выше (больше). Для этого необходимо сравнить прогнозируемую температуру четверга и пятницы. По условию, в четверг 0˚C, а в пятницу-2˚C. Получается, что нам нужно сравнить отрицательное число и ноль. А как это правильно сделать? В математике существует правило, которое говорит:
Ноль всегда будет больше любого отрицательного числа.
Исходя из рассмотренного правила, сравним предполагаемые показатели термометра в указанные дни:
0>-2 – ноль больше, чем минус два.
Теперь, мы можем сказать, что в четверг температура воздуха будет больше (выше), а значит, именно в этот день будет теплее.
Выполнять сравнение цифровых записей со знаком «минус» и ноля очень просто, главное помнить, что ноль всегда больше любого отрицательного числа!
Сравнение положительных и отрицательных чисел
Как выполнять сравнение положительных и отрицательных чисел с нолем мы уже знаем, а как же сравнивать числа со знаками «плюс» и «минус» между собой? Математика предусмотрела и этот вариант сравнения чисел. Существует правило сравнения положительных и отрицательных чисел.
При сравнении положительного и отрицательного числа, большим всегда будет положительное число.
Рассмотрим на примере.
Сравнение отрицательных чисел
Теперь давайте рассмотрим, как правильно сравнивать числовые значения со знаком «минус».
Если возникла необходимость сравнить отрицательные числа, то нужно помнить простое правило сравнения отрицательных чисел.
Из двух отрицательных чисел большим будет то число, модуль которого меньше.
Разберем на примере.
Вначале, кажется, что сравнивать такие числа очень просто и с этим заданием справится даже первоклассник. Но на самом деле, для выполнения сравнения данных значений необходимо соблюдать следующий алгоритм:
Модуль любого числа всегда имеет только положительное значение.
Для положительного числа модуль равен этому числу:
3=|3|, 24=|24|.
Так как перед каждой записью стоит знак минус, то числа считаются отрицательными, а модуль отрицательного числа равен противоположному числовому значению самого числа.
Рассмотренное правило, говорит о том, что большим будет то число, которое имеет меньший модуль.
При выполнении сравнения значений со знаком минус важно помнить, большим будет то число, модуль которого меньше!
Сравнение числовых значений с использованием горизонтальной координатной прямой
Ну а теперь, рассмотрим еще одни способ сравнения цифровых записей с разными знаками.
Давайте начертим координатную прямую. Для этого, вспомним, что представляет собой координатная прямая.
Координатная прямая – прямая линия, имеющая направление, точку начала отсчета и единичный отрезок.
Отметим на прямой точки A(-4), C(-2), B(2),D(3).
Помни!Точки с положительным значением координаты расположены справа от точки начала отсчета, точки с отрицательным значением координаты находятся слева от точки начала отсчета.
И теперь, с помощью горизонтальной координатной прямой давайте рассмотрим математическое действие – сравнение чисел.
Мы знаем, что точки с положительными координатами, расположились справа от точки начала отсчета, а с отрицательными слева. На координатную прямую нанесены точки B и D, имеющие координаты со знаком «плюс». Сравним координаты данных точек.
Используя рассмотренное правило, делаем вывод, что точка с любой положительной координатой, находится на координатной прямой, правее точки начала отсчета, а значит, имеет большее числовое значение.
То есть, ноль всегда меньше любого положительного числа.
Любая точка, имеющая отрицательное значение координаты, всегда будет расположена левее точки 0, следовательно, любая числовая запись со знаком «минус» всегда меньше 0.
Сравнивать очень просто и интересно, главное запомнить простые правила сравнения и верно использовать их при выполнении заданий!
Вариант 1. С-20. № 6. ГДЗ Алгебра 7 класс Звавич. Сравните с нулем значение выражения. Поможете?
Say you are fond of both things.
Example: I am fond of both fruit and vegetables. ( Подробнее. )
Завод по плану должен был изготовить 537 000 изделий. План был выполнен на 102,5%. Установите:
1) сколько изделий выпустил ( Подробнее. )
Упростите выражение:
1) а) 2,8 ∙ 5а; б)-3,5а ∙ 4; в) 3,6 ∙ 0,8а; г)-8а ∙ (-12);
2) а) ( Подробнее. )
Решите задачу:
За 3 ч мотоциклист проезжает то же расстояние, что велосипедист за 5 ч. Скорость мотоциклиста на 12 км/ч больше ( Подробнее. )
Урок 9 Бесплатно Меньше или больше
Вы уже знаете, что такое натуральное число и как оно записывается.
Также Вам известно, что такое координатный луч.
Сегодня мы применим эти знания, чтобы сформулировать понятия “больше” и “меньше” для натуральных чисел, научимся отвечать на вопрос, как соотносятся два натуральных числа.
Узнаем, как сравнивать числа с помощью координатного луча, как сравнивать натуральные числа с одинаковым и разным количеством знаков, разберем понятие “сортировка” для чисел.
Определение
Вспомним, как выглядит натуральный ряд:
1, 2, 3, 4, 5, 6, 7, 8, 9 …
Из двух натуральных чисел больше то, которое при счете называют позже.
Из двух натуральных чисел меньше то, которое при счете называют раньше.
Данное определение достаточно просто и понятно, посмотрим на примерах.
Например, как соотносятся 3 и 5?
Если мы посмотрим на натуральный ряд, то увидим, что 3 названо раньше, чем 5, следовательно, 3 меньше 5-ти.
Другой пример, как соотносятся числа 9 и 6?
Опять же, надо посмотреть на натуральный ряд, тогда можно увидеть, что 9 названо позже, чем 6, значит, 9 больше 6-ти.
Каждый раз писать словами “больше” или “меньше” может быть неудобно, поэтому удобно использовать знаки.
Знак “ ” читается как “больше”.
Таким образом, чтобы кратко записать, что 3 меньше 5-ти, достаточно написать “\(\mathbf<3 6>\)”.
Запись с использование знаком “больше” или “меньше” называют неравенством.
Довольно часто вопрос про соотношение двух чисел может ставится так: “какой знак должен стоять в неравенстве на месте пропуска”, а дальше идет неравенство с пропущенным знаком, например, такое: “4 _ 6”.
В данном случае надо ответить на вопрос, больше ли 4 6-ти или меньше, и поставить соответствующий знак.
Здесь первое число меньше второго и нужно поставить знак “ 0”, “2 > 0”, “3 > 0” и так далее для каждого натурального числа.
Пройти тест и получить оценку можно после входа или регистрации