Что значит специфична по отношению к аминокислоте

Биосинтез белка

Биосинтез белка – это процесс реализации генетической информации. В клетках любого организма существует единая белок-синтезирующая система, в которую входят нуклеиновые кислоты ДНК, т-РНК, и-РНК. Для того чтобы белок синтезировался генетическая информация о последовательности нуклеотидов должна быть доставлена к рибосомам. Этот процесс включает два этапа: транскрипцию и трансляцию

Транскрипция никогда не начинается и не заканчивается в любом месте ДНК-матрицы. На ДНК имеются специфические стартовые точки, которым молекулы фермента присоединяются, и специфические конечные участки, где они освобождаются. РНК-полимераза выбирает также цепь ДНК, которую она должна копировать.

Область, к которой присоединяется РНК-полимераза, называется промотором. У эукариот стартовой точкой является аденин, по обе стороны от которого располагаются пиримидины:

Для того чтобы фермент узнавал стартовые точки, должна сохраняться двуцепочечная структура ДНК, так как на одиночной цепи РНК-полимераза может ошибиться в выборе стартовой точки и начать транскрипцию любого участка. После выбора стартовой точки на двойной спирали ДНК РНК-полимераза разъединяет её на отдельные участки, присоединяется к одной из них и использует её в качестве матрицы для транскрипции.

Транскрипция, как и любая реакция матричного синтеза, протекает в три стадии.

Инициация – распознавание РНК-полимеразой промотора и сборка первых 8 рибонуклеотидов.

Элонгация – дальнейший рост цепи за счет присоединения рибонуклеотидов.

Терминация – завершение процесса транскрипции и прекращение роста цепи РНК на специфическом участке ДНК – терминаторе. Он представлен группой последовательностей А-Т, в начале которой располагаются пары Г-Ц, образующие палиндром – участок ДНК, на котором в «+» и «-» цепях в разных направлениях читается одна и та же последовательность азотистых оснований:

Достигнув палиндрома, РНК-полимераза прекращает работу.

И-РНК синтезируется в виде предшественника – гетероядерной РНК (гя-РНК), которая, как и ген, имеет интрон-экзонную структуру. Это означает, что гя-РНК разделена на информативные участки – экзоны и участки, не несущие наследственной информации – интроны. Последние располагаются между экзонами таким образом, что генетическая информация записывается прерывистой фразой. Чтобы стать функционально активной гя-РНК должна «созреть», т. е. пройти посттранскрипционный процессинг. При этом из нее последовательно удаляются интроны, затем «сшиваются» (сплайсинг) экзоны (рис. 3). Зрелая и-РНК составляет примерно 1/10 часть от первоначального транскрипта. Порядок расположения в ней триплетов и расстояния между ними совпадает с таковым аминокислот в полипептидной цепи. Далее в сопровождении белков-переносчиков зрелая и-РНК через поры в ядерной мембране поступает в цитоплазму для трансляции.

Трансляция – это процесс своеобразного перевода кодовой последовательности нуклеотидов в реальную первичную структуру полипептида. Центральная роль в нем принадлежит рибосомам – так называемым читающим машинам, которые у эукариот состоят из двух субъединиц – 40S и 60S (S –единица Сведберга; означает скорость седиментации, т. е. осаждения частиц в центрифуге), построенных из белка и РНК. Рибосомы выполняют две важные функции: обеспечивают точное считывание молекул и-РНК, увеличивают эффективность и скорость синтеза полипептида.

Трансляция является матричным синтезом, причем роль матрицы выполняет и-РНК. Процесс протекает по трем классическим стадиям, которым предшествует этап активации аминокислот, поскольку свободные аминокислоты рибосомой не используются.

Инициация – присоединение малой субъединицы к соответствующему центру на и-РНК, который включает в себя метиониновый кодон (старт-кодон) АУГ, поэтому синтез полипептида у экариот всегда начинается с метионина.

Элонгация – многократное повторение цикла ковалентного присоединения аминокислот к растущей цепи.

Терминация – прекращение роста полипептидной цепи стоп-кодонами: УАГ, УАА, УГА.

Биосинтез полипептидной цепи на рибосоме проходит ряд этапов и осуществляется следующим образом.

Этап 1. Активация аминокислот. Активацию аминокислот осуществляют ферменты аминоацил- тРНК-синтетазы. Эти ферменты специфичны по отношению к аминокислотам, т. е. для каждой аминокислоты существует своя аминоацил-тРНК-синтетаза (рис. 4).

Механизм активации аминокислоты: фермент одновременно взаимодействует с соответствующей аминокислотой и с АТФ, которая теряет при этом пирофосфат:

Аминоацил-тРНК-синтетаза + АТФ + аминокислота = аминоацил-тРНК-синтетаза +

В результате образуется тройной комплекс из фермента, аминокислоты и АМФ – тройной комплекс.

Этап 2. Присоединение к активированной аминокислоте т-РНК. Присоединение активированной аминокислоты происходит за счет эфирной связи между карбоксильной группой аминокислоты и гидроксильной группой рибозы:

тРНК- + т-РНК = аминокислота – т-РНК + аминоацил-тРНК-синтетаза.

Этап 3. Синтез полипептидной цепи в рибосомной системе. Непосредственно синтез полипептидной цепи в рибосомной системе начинается с малой субъединицы с и-РНК. Затем к этому комплексу присоединяется амионацил-тРНК и далее – большая субъединица рибосомы, после чего весь рибосомный комплекс начинает перемещаться в направлении 3’-конца молекулы и-РНК. При этом аминоацильный участок рибосомы (рис. 5) находится впереди, а пептидильный – сзади. В процессе движения комплексы аминоацил-тРНК с антикодоном, комплементарным кодону и-РНК, кодирующему какую-нибудь аминокислоту, поступают в аминоацильный участок рибосомы. Здесь происходит образование пептидной связи между принесенной аминокислотой, входящей в комплекс аминоацил-тРНК, и свободным концом вновь синтезируемой цепи полипептида. После образования пептидной связи т-РНК перемещается в пептидильный участок рибосомы. Одновременно с этим рибосома целиком передвигается в направлении следующего кодона и-РНК, который кодирует местоположение следующей аминокислоты в полипептидной цепи. Молекула т-РНК, которая находится в пептидильном участке рибосомы, отщепляется от него и переходит в цитоплазму, где присоединяет новую аминокислоту. Одновременно к аминоацильному участку присоединяется следующий комплекс аминоацил-тРНК. Соединение аминокислот в полипептидную цепь осуществляется в месте выхода каналоподобной структуры в зазор между большой и малой субъединицами рибосомы так, что синтезируемый полипептид располагается в этой каналоподобной структуре. По завершении синтеза через пору в мембране эндоплазматической сети полипептид поступает в ее внутреннее пространство для формирования окончательной структуры и транспорта белка по месту назначения.

Важным моментом в процессе биосинтеза белка является идентификация – установление совпадения кодона и-РНК с антикодоном т-РНК. Идентификация происходит вследствие комплементарности трех нуклеотидов и-РНК трем нуклеотидам т-РНК, расположенным на выступающей части петли нити т-РНК. Идентификация триплетов т-РНК является необходимым условием биосинтеза полипептидной цепи.

Процесс синтеза белка – ферментативный процесс, представленный серией ферментативных реакций с участием АТФ, которая является источником энергии. Ферментативный механизм построения полипептидной цепи обеспечивает специфичность взаимодействия всех звеньев пути синтеза белка.

Источник

Генетический код и его свойства

Как уже отмечалось, все многообразие свойств белков определяется их первичной структурой, т. е. последовательностью аминокислот. Огромное количество отобранных в процессе эволюции уникальных сочетаний аминокислот воспроизводится путем синтеза нуклеиновых кислот с такой последовательностью нуклеотидов, которая соответствует последовательности аминокислот в белках. Определенные сочетания нуклеотидов и последовательность их расположения в ДНК являются кодом, несущим информацию о структуре белка, или генетическим кодом.

Генетический код – это свойственная живым организмам единая система записи генетической информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов.

Генетический код разных организмов обладает некоторыми общими свойствами:

2) Вырожденность (избыточность) – свойство генетического кода состоящее с одной стороны, в том, что он содержит избыточные триплеты, т. е. синонимы, а с другой – «бессмысленные» триплеты. Поскольку код включает 64 сочетания, а кодируются только 20 аминокислот, то некоторые аминокислоты кодируются несколькими триплетами (аргинин, серин, лейцин – шестью; валин, пролин, аланин, глицин, треонин – четырьмя; изолейцин – тремя; фенилаланин, тирозин, гистидин, лизин, аспарагин, глутамин, цистеин, аспарагиновая и глутаминовая кислоты – двумя; метионин и триптофан – одним триплетом). Некоторые кодовые группы (УАА, УАГ, УГА) вообще не несут смысловой нагрузки, т. е. являются «бессмысленными» триплетами. «Бессмысленные», или nonsense, кодоны выполняют функцию терминаторов цепей – знаков препинания в генетическом тексте – служат сигналом окончания синтеза белковой цепи. Такая избыточность кода имеет большое значение для повышения надежности передачи генетической информации.

3) Неперекрываемость. Кодовые триплеты никогда не перекрываются, т. е. всегда транслируются вместе. При считывании информации с молекулы ДНК невозможно использование азотистого основания одного триплета в комбинации с основаниями другого триплета.

4) Однозначность. Нет случаев, когда один и тот же триплет соответствовал бы более чем одной кислоте.

5) Отсутствие разделительных знаков внутри гена. Генетический код считывается с определенного места без запятых.

6) Универсальность. У различных видов живых организмов (вирусов, бактерий, растений, грибов и животных) одинаковые триплеты кодируют одни и те же аминокислоты.

7) Видовая специфичность. Количество и последовательность азотистых оснований в цепи ДНК у разных организмов различные.

Биосинтез белка.

Биосинтез белка – это процесс реализации генетической информации. В клетках любого организма существует единая белок-синтезирующая система, в которую входят нуклеиновые кислоты ДНК, т-РНК, и-РНК. Для того чтобы белок синтезировался генетическая информация о последовательности нуклеотидов должна быть доставлена к рибосомам. Этот процесс включает два этапа: транскрипцию и трансляцию

Транскрипция никогда не начинается и не заканчивается в любом месте ДНК-матрицы. На ДНК имеются специфические стартовые точки, которым молекулы фермента присоединяются, и специфические конечные участки, где они освобождаются. РНК-полимераза выбирает также цепь ДНК, которую она должна копировать.

Область, к которой присоединяется РНК-полимераза, называется промотором. У эукариот стартовой точкой является аденин, по обе стороны от которого располагаются пиримидины:

Для того чтобы фермент узнавал стартовые точки, должна сохраняться двуцепочечная структура ДНК, так как на одиночной цепи РНК-полимераза может ошибиться в выборе стартовой точки и начать транскрипцию любого участка. После выбора стартовой точки на двойной спирали ДНК РНК-полимераза разъединяет её на отдельные участки, присоединяется к одной из них и использует её в качестве матрицы для транскрипции.

Транскрипция, как и любая реакция матричного синтеза, протекает в три стадии.

Инициация – распознавание РНК-полимеразой промотора и сборка первых 8 рибонуклеотидов.

Элонгация – дальнейший рост цепи за счет присоединения рибонуклеотидов.

Терминация – завершение процесса транскрипции и прекращение роста цепи РНК на специфическом участке ДНК – терминаторе. Он представлен группой последовательностей А-Т, в начале которой располагаются пары Г-Ц, образующие палиндром – участок ДНК, на котором в «+» и «-» цепях в разных направлениях читается одна и та же последовательность азотистых оснований:

Достигнув палиндрома, РНК-полимераза прекращает работу.

И-РНК синтезируется в виде предшественника – гетероядерной РНК (гя-РНК), которая, как и ген, имеет интрон-экзонную структуру. Это означает, что гя-РНК разделена на информативные участки – экзоны и участки, не несущие наследственной информации – интроны. Последние располагаются между экзонами таким образом, что генетическая информация записывается прерывистой фразой. Чтобы стать функционально активной гя-РНК должна «созреть», т. е. пройти посттранскрипционный процессинг. При этом из нее последовательно удаляются интроны, затем «сшиваются» (сплайсинг) экзоны (рис. 3). Зрелая и-РНК составляет примерно 1/10 часть от первоначального транскрипта. Порядок расположения в ней триплетов и расстояния между ними совпадает с таковым аминокислот в полипептидной цепи. Далее в сопровождении белков-переносчиков зрелая и-РНК через поры в ядерной мембране поступает в цитоплазму для трансляции.

Трансляция – это процесс своеобразного перевода кодовой последовательности нуклеотидов в реальную первичную структуру полипептида. Центральная роль в нем принадлежит рибосомам – так называемым читающим машинам, которые у эукариот состоят из двух субъединиц – 40S и 60S (S –единица Сведберга; означает скорость седиментации, т. е. осаждения частиц в центрифуге), построенных из белка и РНК. Рибосомы выполняют две важные функции: обеспечивают точное считывание молекул и-РНК, увеличивают эффективность и скорость синтеза полипептида.

Трансляция является матричным синтезом, причем роль матрицы выполняет и-РНК. Процесс протекает по трем классическим стадиям, которым предшествует этап активации аминокислот, поскольку свободные аминокислоты рибосомой не используются.

Инициация – присоединение малой субъединицы к соответствующему центру на и-РНК, который включает в себя метиониновый кодон (старт-кодон) АУГ, поэтому синтез полипептида у экариот всегда начинается с метионина.

Элонгация – многократное повторение цикла ковалентного присоединения аминокислот к растущей цепи.

Терминация – прекращение роста полипептидной цепи стоп-кодонами: УАГ, УАА, УГА.

Биосинтез полипептидной цепи на рибосоме проходит ряд этапов и осуществляется следующим образом.

Этап 1. Активация аминокислот. Активацию аминокислот осуществляют ферменты аминоацил- тРНК-синтетазы. Эти ферменты специфичны по отношению к аминокислотам, т. е. для каждой аминокислоты существует своя аминоацил-тРНК-синтетаза (рис. 4).

Механизм активации аминокислоты: фермент одновременно взаимодействует с соответствующей аминокислотой и с АТФ, которая теряет при этом пирофосфат:

Аминоацил-тРНК-синтетаза + АТФ + аминокислота = аминоацил-тРНК-синтетаза +

В результате образуется тройной комплекс из фермента, аминокислоты и АМФ – тройной комплекс.

Этап 2. Присоединение к активированной аминокислоте т-РНК. Присоединение активированной аминокислоты происходит за счет эфирной связи между карбоксильной группой аминокислоты и гидроксильной группой рибозы:

тРНК- + т-РНК = аминокислота – т-РНК + аминоацил-тРНК-синтетаза.

Этап 3. Синтез полипептидной цепи в рибосомной системе. Непосредственно синтез полипептидной цепи в рибосомной системе начинается с малой субъединицы с и-РНК. Затем к этому комплексу присоединяется амионацил-тРНК и далее – большая субъединица рибосомы, после чего весь рибосомный комплекс начинает перемещаться в направлении 3’-конца молекулы и-РНК. При этом аминоацильный участок рибосомы (рис. 5) находится впереди, а пептидильный – сзади. В процессе движения комплексы аминоацил-тРНК с антикодоном, комплементарным кодону и-РНК, кодирующему какую-нибудь аминокислоту, поступают в аминоацильный участок рибосомы. Здесь происходит образование пептидной связи между принесенной аминокислотой, входящей в комплекс аминоацил-тРНК, и свободным концом вновь синтезируемой цепи полипептида. После образования пептидной связи т-РНК перемещается в пептидильный участок рибосомы. Одновременно с этим рибосома целиком передвигается в направлении следующего кодона и-РНК, который кодирует местоположение следующей аминокислоты в полипептидной цепи. Молекула т-РНК, которая находится в пептидильном участке рибосомы, отщепляется от него и переходит в цитоплазму, где присоединяет новую аминокислоту. Одновременно к аминоацильному участку присоединяется следующий комплекс аминоацил-тРНК. Соединение аминокислот в полипептидную цепь осуществляется в месте выхода каналоподобной структуры в зазор между большой и малой субъединицами рибосомы так, что синтезируемый полипептид располагается в этой каналоподобной структуре. По завершении синтеза через пору в мембране эндоплазматической сети полипептид поступает в ее внутреннее пространство для формирования окончательной структуры и транспорта белка по месту назначения.

Важным моментом в процессе биосинтеза белка является идентификация – установление совпадения кодона и-РНК с антикодоном т-РНК. Идентификация происходит вследствие комплементарности трех нуклеотидов и-РНК трем нуклеотидам т-РНК, расположенным на выступающей части петли нити т-РНК. Идентификация триплетов т-РНК является необходимым условием биосинтеза полипептидной цепи.

Процесс синтеза белка – ферментативный процесс, представленный серией ферментативных реакций с участием АТФ, которая является источником энергии. Ферментативный механизм построения полипептидной цепи обеспечивает специфичность взаимодействия всех звеньев пути синтеза белка.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)

Источник

Что значит специфична по отношению к аминокислоте

Рассмотрите схему. Запишите в ответе пропущенный термин обозначенный на схеме знаком вопроса.

Ответ: вирус, или вирусы.

Мутационная изменчивость связана со спонтанными изменениями наследственного материала, при которых либо нарушается структура (нуклеотидная последовательность) гена (генная мутация), либо изменяется структура хромосом (хромосомная мутация), либо изменяется количество хромосом (геномная мутация).

Мутагены — факторы, вызывающие наследственные изменения — мутации. По природе возникновения мутагены классифицируют на физические, химические и биологические.

Физические мутагены: ионизирующее излучение; радиоактивный распад; ультрафиолетовое излучение; чрезмерно высокая или низкая температура.

Химические мутагены: некоторые алкалоиды (колхицин — один из самых распространенных в селекции мутагенов); окислители и восстановители (нитраты, нитриты, активные формы кислорода); алкилирующие агенты; нитропроизводные мочевины; некоторые пестициды; некоторые пищевые добавки (ароматические углеводороды, цикламаты); продукты переработки нефти; органические растворители; лекарственные препараты (цитостатики, иммунодепрессанты).

Биологические мутагены: некоторые вирусы (вирус кори, краснухи, гриппа).

Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.

Методы биологических исследований

МетодПрименение метода
Популяционно-статистическийИзучение распространения признака

в популяции

Определение количества сахара

Микроскопия – изучение морфологии клетки.

Хроматография – физико-химический метод, используемый в цитологии для разделения смеси веществ, основанном на разной скорости движения веществ через адсорбент, например, разделение смеси пигментов растений.

Метод меченых атомов – введение в вещество радиоактивного изотопа химического элемента для изучения путей его превращения в клетке. Метод используется для изучения жизнедеятельности клетки.

Биохимический метод – метод, используемый в цитологии для обнаружения и оценки количества веществ в клетках и тканях организмов, изучение структуры веществ.

Центрифугирование – метод разделения клеточных структур и макромолекул с помощью центрифуги, позволяющий дифференцировано осаждать клеточные структуры, отличающиеся друг от друга своей массой.

Метод культуры клеток и тканей – изучение жизнедеятельности клеток и тканей путем культивирования их на искусственных средах.

Гибридологический – генетический анализ потомства (гибридов), полученного от родителей, отличающихся по одному или нескольким признакам.

Цитогенетический – изучение количества и структуры хромосом с помощью микроскопа, позволяет выявить хромосомные (изменение структуры хромосом) и геномные (изменение количества хромосом) мутации.

Близнецовый – метод сравнительного изучения наследования признаков у близнецов, позволяет установить роль среды и наследственности в определении признака.

Генеалогический – изучение наследование признака на основе анализа родословных, позволяет определять характер наследования признака, а также особенности наследования признаков, обусловленных генными мутациями.

Популяционно-статистический – определение частоты встречаемости различных генов в популяциях организмов.

Определение количества веществ в организме (сахара в крови) относится к биохимическому методу.

Источник

Что значит специфична по отношению к аминокислоте

Рассмотрите предложенную схему и запишите в ответе пропущенный термин, обозначенный на схеме знаком вопроса.

1) На подготовительном этапе сложные органические вещества расщепляются до менее сложных, например, биополимеры — до мономеров.

2) В процессе гликолиза глюкоза расщепляется до пировиноградной кислоты (или молочной кислоты, или спирта) и синтезируется 2 молекулы АТФ.

3) На кислородном этапе (окислительное фосфорилирование) пировиноградная кислота (пируват) расщепляется до углекислого газа и воды и синтезируется 36 молекул АТФ.

На схеме не хватает гликолиза.

Гликолиз имеет равнозначные названия — бескислородный этап, ИЛИ анаэробный этап, ИЛИ бескислородное окисление. Составители вопроса заложили в критерии только гликолиз, поэтому, если другие варианты не засчитают, смело подавайте на апелляцию.

Рассмотрите таблицу «Вклад ученого в развитие данной науки» и заполните пустую ячейку, вписав соответствующий термин.

Вирусология – наука о вирусах.

Микробиология (бактериология) – наука о бактериях.

Микология – наука о грибах.

Ботаника – наука о растениях.

Зоология – наука о животных.

Антропология – наука о человеке.

Палеонтология – наука об ископаемых растениях и животных.

Анатомия – наука о внутреннем строении организма.

Биофизика – наука о физических и физико-химических процессах в клетке.

Биохимия – наука о химических процессах в организме.

Генетика – наука о наследственности и изменчивости.

Гистология – наука о тканях организмов.

Иммунология – наука об иммунитете (способности организма защищаться от чужеродных тел).

Молекулярная биология – наука о реализации наследственной информации, о нуклеиновых кислотах и белках.

Морфология – наука о внешнем строение организма.

Селекция – наука о создании новых пород животных, сортов растений, штаммов грибов и микроорганизмов.

Систематика – наука о разнообразии организмов.

Физиология – наука о функциях органов и жизнедеятельности организма.

Цитология – наука о клетке.

Экология – наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой.

Бинарная номенклатура для названий видов организмов, предложенная К. Линнеем, лежит в основе изучения разнообразия и классификации организмов – предмета изучения систематики.

Сколько полинуклеотидных цепочек будет содержать одна хромосома в конце интерфазы? В ответе запишите только число.

Интерфаза делится на три следующих друг за другом фазы: досинтетической (в клетке одинарные хромосомы, каждая хромосома содержит одну молекулы ДНК), синтетической (происходит синтез ДНК — редупликация) и постсинтетической (клетка после редупликации содержит двойные (двухроматидные) хромосомы, каждая хромосома содержит две молекулы ДНК).

Молекула ДНК состоит из двух полинуклеотидных цепочек.

В конце интерфазы (постсинтетическая фаза) каждая хромосома двухроматидная, содержит две молекулы ДНК. Каждая молекула ДНК, в свою очередь, состоит из двух полинуклеотидных цепочек. Таким образом, одна хромосома в конце интерфазы содержит четыре полинуклеотидных цепочки (2 молекулы ДНК в хромосоме x 2 полинуклеотидные цепочки в каждой ДНК = 4 полинуклеотидных цепочек).

Какими особенностями, в отличие от животной и грибной, обладает растительная клетка?

1) образует целлюлозную клеточную стенку

2) включает рибосомы

3) обладает способностью многократно делиться

4) накапливает питательные вещества

5) содержит лейкопласты

6) не имеет центриолей

1) эукариотическая клетка;

2) отсутствует клеточная стенка;

3) на наружной поверхности клеточной мембраны имеется гликокаликс, образованный олигосахаридами;

4) в наружной клеточной мембране присутствует холестерин;

5) мембранные органоиды: ЭПС, аппарат Гольджи, митохондрии, лизосомы, пероксисомы;

6) немембранные органоиды: рибосомы, клеточный центр (центриоли), микротрубочки, микрофиламенты;

7) отсутствуют пластиды (хлоропласты, хромопласты, лейкопласты), отсутствуют крупные центральные вакуоли;

8) запасной полисахарид – гликоген.

Признаки грибной клетки:

1) эукариотическая клетка;

2) клеточная стенка из хитина;

3) мембранные органоиды: ЭПС, аппарат Гольджи, митохондрии, вакуоли;

4) немембранные органоиды: рибосомы, клеточный центр (центриоли), микротрубочки, микрофиламенты;

5) отсутствуют пластиды (хлоропласты, хромопласты, лейкопласты), отсутствуют лизосомы;

6) запасной полисахарид – гликоген.

Признаки растительной клетки:

1) эукариотическая клетка;

2) клеточная стенка из целлюлозы;

3) мембранные органоиды: ЭПС, аппарат Гольджи, пластиды (хлоропласты, хромопласты, лейкопласты), митохондрии, центральные вакуоли;

4) немембранные органоиды: рибосомы, микротрубочки, микрофиламенты;

5) отсутствуют лизосомы, отсутствует клеточных центр (центриоли) у большинства растений (есть у низших растений);

6) запасной полисахарид – крахмал.

(1) образует целлюлозную клеточную стенку – растительная клетка;

(2) включает рибосомы – все клетки;

(3) обладает способностью многократно делиться – низкодифференцированные растительные, грибные, животные клетки;

(4) накапливает питательные вещества – и растительная, и грибная, и животная;

(5) содержит лейкопласты – растительная клетка;

(6) не имеет центриолей – растительная клетка (большинство).

Установите соответствие между признаками и видами нуклеиновых кислот.

A) хранит наследственную информацию

Б) копирует наследственную информацию и передаёт её к месту синтеза белка

B) является матрицей для синтеза белка

Г) состоит из двух цепей

Д) переносит аминокислоты к месту синтеза белка

Е) специфична по отношению к аминокислоте

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

При скрещивании гомозиготных растений томатов с красными (А) круглыми (В) плодами и растений с желтыми (а) грушевидными (b) плодами в F2 происходит расщепление по фенотипу в соотношении (гены окраски и формы плодов расположены в разных парах хромосом). Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов, в порядке их убывания.

Все приведённые ниже термины, кроме двух, используются для описания полового размножения организмов. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) гонада — орган, в котором образуются половые клетки — половое размножение;

2) спора — клетка для бесполого размножения у грибов и растений — бесполое размножение;

3) оплодотворение — процесс слияния двух половых клеток — половое размножение;

4) овогенез — процесс образования женских половых клеток — половое размножение;

5) почкование — вид бесполого размножения у дрожжей и гидры — бесполое размножение.

Установите соответствие между примерами и способами размножения организмов: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) семенное размножение растений

Д) бинарное деление

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Половое размножение — размножение, в котором, как правило, участвуют две особи, а новый организм образуется из зиготы в результате слияния специализированных половых клеток (гамет). Формы половому размножению: размножение с оплодотворением (в том числе семенное размножение у растений) и размножение без оплодотворения — развитие новой особи из неоплодотворенной яйцеклетки (партеногенез, гиногенез) или только за счет генетического материала сперматозоида (андрогенез), а также конъюгацию — половой процесс инфузории-туфельки.

ПРИМЕЧАНИЕ: В школьном курсе и ЕГЭ все формы размножения делят на два типа: бесполое размножение (к которому относят не только размножение спорами, а и все виды неполового размножения) и половое размножение.

(А) — семенное размножение растений — половое размножение;

(Б) — почкование — бесполое размножение;

(В) — фрагментация — бесполое размножение;

(Г) — партеногенез — половое размножение;

(Д) — бинарное деление — бесполое размножение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

ПРИЗНАКИ НУКЛЕИНОВЫХ КИСЛОТВИДЫ НУКЛЕИНОВЫХ КИСЛОТ